• Title/Summary/Keyword: Design rainfall intensity

Search Result 119, Processing Time 0.021 seconds

Studies on the Rainfall Characteristics in Chungnam Region(I) Probable Rainfall Intensity in Short Duration in Daejeon Area (충남지방(忠南地方)의 강우특성(降雨特性)에 관(關)한 연구(硏究)(I) 대전지역(大田地域)의 단시간(短時間) 확률강우강도(確率降雨强度))

  • Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.82-89
    • /
    • 1981
  • The characteristic of rainfall intensity in short duration is very important to calculate short-term runoff in small watershed by Rational method. Therefore, the purpose of this study is to derive the most proper formula on the probable rainfall intensity in each return period in Daejeon area. And the results of this study could be utilized for the design of drainage-structures in small watershed, drainage system in urban area and flood control in small river basin. The result s of this study are summerized as follows. 1. Gumbel-Chow method which shows the mean value was chosen to calculate the probable rainfall in tensity in each return periods. 2. According to statistical judgement, probable rainfall intensity formula of Japanese type($I={\frac{a}{t+b}}$, see Table-6) shows the most proper one among other types of formula like Talbot type, Sherman type and Characteristic coefficient method. Probable rainfall in tensity value of Japanese type in Daejeon area shows well coincidence with the one obtained by applying prof. Park's n-coefficient to Monobe formula $I=({\frac{R_{24}}{24}})({\frac{T}{t}})^{0.5486}$. On the other hand, the value by Monobe formula with n-coefficient of 2/3 which is being used as a disign criterison by M. O. C. shows large difference from the fore-mentioned results (see Table-7). Consequently the value by Monobe formula might be judged that it is too much overestimated one as a design criterion. 3. Short-term runoff in small water shed could be calculated more reasonably in Daejeon area through this probable rainfall in tensity formula.

  • PDF

Analysis of Soil Saturation Characteristics According to the Presence or Absence of Soil Layer Depth and Impervious (침투해석시 토층심도 및 불투수층 유무에 따른 지반의 포화특성 분석)

  • Lee, Seung Woo;Chang, Bhum Soo;Kim, Yong Soo;Lee, Jong Gun;Lee, Ju Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In recent study, infiltration analysis considering rainfall intensity is more economical and practical than existing analysis method. Revised construction slope design standard is also stated to full-fill infiltration analysis considering rainfall for practical stability review. Infiltration analysis considering rainfall for practical stability review. But, to infiltration analysis, the process is complicated by ground impermeability and rainfall intensity. In this study, we perform infiltration analysis to charge infiltration conditions, soil type and rainfall characteristics, for more pratical stability review. Using the result, we can suggest construable condition on the assumption that soil is saturated up to surface zone.

Estimation of Design Rainfalls Considering an Increasing Trend in Rainfall Data (강우량의 증가 경향성을 고려한 목표년도 확률강우량 산정)

  • Kwon, Young-Moon;Park, Jin-Won;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.131-139
    • /
    • 2009
  • Recently frequent occurrences of heavy rainfall and increases of rainfall intensity resulted in severe flood damage in Korea. In order to mitigate the vulnerability of flood, it is necessary to estimate proper design rainfalls considering the increasing trend of extreme rainfalls for hydrologic planning and design. This study focused the estimation of design rainfalls in a design target year. Tests of trend indicated that there are 7 sites showing increasing trends among 56 sites which have hourly data more than 30 years in Korea. This study analyzed the relationship between mean of annual maximum rainfalls and parameters of the Gumbel distribution. Based on the relationship, this study estimated the probability density function and design rainfalls in a design target year, and then constructed the rainfall-frequency curve. The proposed method estimated the design rainfalls 6-20% higher than those from the stationary rainfall frequency analysis.

A Study on the Improvement of Huff's Method for Applying in Korea : II. Improvement of Huff's Method (Huff 강우시간분포방법의 개선방안 연구 : II. Huff 방법의 개선방안)

  • Jang Su-Hyung;Yoon Jae-Young;Yoon Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.779-786
    • /
    • 2006
  • In this study, we propose a new method that utilizes rainfall data in and out of a basin, which is greater than 25.4mm for point rainfall or 12.7mm for areal mean rainfall respectively. From our analysis, most frequent quartile for point and areal mean rainfall were found to be the same in general for various rainfall duration intervals. From an evaluation of design rainfall per each rainfall duration distributed in time by the MOCT(Ministry of Construction and Transportation) version of Huff's method and this study, peak rainfall intensity by this study was found to be greater than the one by MOCT, but there were no consistent increase or decrease of this difference with rainfall durations. Using the distributed design rainfall per each duration by MOCT and this study, corresponding flood inflow hydrographs were simulated and compared each other. Contrary to the case of peak rainfall intensity, difference in peak flow by both methods per each rainfall duration started to increase from about 12-hr duration. Especially, the difference in peak flow was significant when critical rainfall duration was considered, and this trend was similar for peak flows of other rainfall durations. Therefore, the method proposed in this study is thought to be the effective procedure for the construction of dimensionless cumulative rainfall curve that is representative of a basin while considering time distribution characteristics for different rainfall durations.

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF

A Practical Approach Determining an IDF formula with Limited Rainfall-Duration Data Availability (제한적 강우-지속기간 자료를 이용한 실용적 IDF 관계식의 유도)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.587-595
    • /
    • 2008
  • In order to aid the derivation of the IDF relationship for a station with insufficient duration-rainfall data, an approach to derive a simple and practical IDF formula is presented. The IDF formula is described simply by the term of the two parameters and a design frequency. The model parameters were estimated from a statistical technique based on the normal distribution of transformed rainfall intensities. In order to give the transformed data, both the Kruskal-Wallis statistic and the Manly transformation of duration-rainfall data were adopted. With the methods, the proposed IDF formula becomes a simpler model that compares well with conventional form. In addition, it allows avoiding an exceptional condition of the higher rainfall intensity for longer duration. The performance of the proposed formula was evaluated by using the limited rainfall data for short duration from two gauge stations. The result showed that the IDF formula developed in this work was an effective tool, providing a reliable relationship between the intensity and duration even though insufficient data are only available.

Calculation of Rainfall Triggering Index (RTI) to Predict the Occurrence of Debris Flow (토석류 발생 예측을 위한 강우경보지수 산정)

  • Nam, Dong-Ho;Lee, Suk-Ho;Kim, Man-Il;Kim, Byung-Sik
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.47-59
    • /
    • 2018
  • At present, there has been a wide range of studies on debris flow in Korea, more specifically, on rainfall characteristics that trigger debris flow including rainfall intensity, rainfall duration, and preceding rainfall. the prediction of landslide / debris flow relies on the criteria for landslide watch and warning by the Korea Forest Service (KFS, 2012). Despite this, it has been found that most incidents of debris flow were caused by rainfall above the level of landslide watch, maximum hourly rainfall, extensive damage was caused even under the watch level. Under these circumstances, we calculated a rainfall triggering index (RTI) using the main factors that trigger debris flow-rainfall, rainfall intensity, and cumulative rainfall-to design a more sophisticated watch / warning criteria than those by the KFS. The RTI was classified into attention, caution, alert, and evacuation, and was assessed through the application of two debris flow incidents that occurred in Umyeon Mountain, Seoul, and Cheongju, Inje, causing serious damage and casualties. Moreover, we reviewed the feasibility of the RTI by comparing it with the KFS's landslide watch / warning criteria (KFS, 2012).

A methodological approach for slope stability analysis in Steady state infiltration (정상류 침투를 가정한 강우시 사면안정해석기법)

  • Song, Pyung-Hyun;You, Byung-Ok;Ahn, Kwang-Kuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.736-744
    • /
    • 2009
  • The abrupt failure of slope caused by a concentrated rainfall would be a disaster in this country. Specially, the soil slope may be collapsed by the rainfall seepage, however, there is not much information for the mechanism of slope failure during rainfall. As analyzing the stability of slope by rainfall, the conventional method is to put the ground-water level on the surface of slope. However, it may provide the over-reinforcement for the slope stability. Futhermore, although over-reinforcement for the slope was fulfilled, the possibility of potential slope failure still exists. In this study, the slope stability by the conventional design method and the causes of unstable slope during rainfall were investigated. To analyze the slope stability by rainfall, the computer program SEEP/W for the analysis of seepage was used. As changing the intensity and duration of rainfall in SEEP/W, the analysis were performed. After completion of analysis, the porewater pressure data from SEEP/W was applied to SLOPE/W. As a results of this analysis, it is not reasonable that the groundwater level is going up to the surface of slope during rainfall. Therefore, the conventional reinforcement for the slope stability is not obvious to satisfy the criterion safety factor during rainfall. The reasonable counterplan is to install drainage hole on the surface of slope in order to prevent erosion and debris flow.

  • PDF

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

Comparison of Urban Runoff Models for Interior Drainage in Urban Basin (도시유역의 내수배제를 위한 도시유출모델의 비교)

  • Choi, Yun-Young;Lee, Yeong-Hwal;Jee, Hong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.251-259
    • /
    • 2000
  • In this study, the urban runoff models, ILLUDAS model and SWMM, are analyzed the probable peak discharge and discharge using rainfall distribution by Huff's method at Bum-uh chun area in Taegu city. The probability rainfall and intensity is analyzed by Pearson-III type. The rainfall duration, 90 minutes, is determined by the critical duration computed the maximun peak discharge for some rainfall durations. The peak discharge according to Huff's rainfall distribution types compute in order of type 3, type 4, type2, and type 1, so Huff's 3 type is selected as an adequate rainfall distribution in Bum-uh chun basin. ILLUDAS model and SWMM are shown as good models in Bum-uh chun, but SWMM is computed higher peak discharge than ILLUDAS model, so SWMM is shown as the adequate urban runoff model for the design of interior drainage in urban basin.

  • PDF