• Title/Summary/Keyword: Design procedure

Search Result 5,167, Processing Time 0.036 seconds

A Recursive Optimization/Simulation Procedure for Express Courier Service Network Design : Determination of Terminal Capacity and Cut-off Time (택배 네트워크 설계를 위한 최적화/시뮬레이션 반복기법 : 화물터미널 용량과 수주마감시간 결정)

  • Ko, Chang Seong;Lee, Hee Jeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.282-289
    • /
    • 2007
  • While demands for express couriers service are rapidly increasing due to recent progress of electronic commerce, express courier service companies are struggling to take a larger market share through ongoing improvement in their service processes. Cut-off time is the time limit that all orders delivered before the limit are guaranteed for the delivery within the very next day. Extending cut-off time for express service centers can provide the express company with increase of total sales, but it may also cause increasing the possibility not to satisfy customer needs due to work delay in the consolidation terminal. We develop a design model for express courier service network based on a recursive optimization/simulation procedure. With the optimization model, we seek key design parameters such as the cut-off time for express service centers and the capacity of the consolidation terminal maximizing total sales profit while satisfying the desired level of performances. With the simulation model, we consider the dynamic nature of the network and obtain relationships between the design parameters and the performance measures with the multiple linear regression. The validity of the model is examined with an example.

Multiobjective Optimization of Three-Stage Spur Gear Reduction Units Using Interactive Physical Programming

  • Huang Hong Zhong;Tian Zhi Gang;Zuo Ming J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1080-1086
    • /
    • 2005
  • The preliminary design optimization of multi-stage spur gear reduction units has been a subject of considerable interest, since many high-performance power transmission applications (e.g., automotive and aerospace) require high-performance gear reduction units. There are multiple objectives in the optimal design of multi-stage spur gear reduction unit, such as minimizing the volume and maximizing the surface fatigue life. It is reasonable to formulate the design of spur gear reduction unit as a multi-objective optimization problem, and find an appropriate approach to solve it. In this paper an interactive physical programming approach is developed to place physical programming into an interactive framework in a natural way. Class functions, which are used to represent the designer's preferences on design objectives, are fixed during the interactive physical programming procedure. After a Pareto solution is generated, a preference offset is added into the class function of each objective based on whether the designer would like to improve this objective or sacrifice the objective so as to improve other objectives. The preference offsets are adjusted during the interactive physical programming procedure, and an optimal solution that satisfies the designer's preferences is supposed to be obtained by the end of the procedure. An optimization problem of three-stage spur gear reduction unit is given to illustrate the effectiveness of the proposed approach.

The Study on Seismic Analysis Methods for Underground Structures (지중구조물의 내진해석방법에 관한 연구)

  • Jeong, Gwang-Mo;Bang, Myeong-Seok
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.75-84
    • /
    • 2011
  • In this paper various numerical analyses are carried out according to behavior characteristics of structures and types of seismic design methods as a study on the seismic analysis for underground structures. Equivalent Static Force Procedure and Response Displacement Method commonly used in practiral design are adopted and Time History Method regarded as the most accurate analysis method is selected to verify the results of two practical methods above. 3-D modelling for seismic analysis of structures is introduced to consider Structure Soil Interaction and all analyses are based on Korea Structural Concrete Design Code. After numerical analyses, Equivalent Static Force Procedure and Response Displacement Method showed relatively lager values than those of Time History Method, so it is identified that above two methods are suitable for practical design purpose.

  • PDF

Nonparametric procedures using aligned method and joint placement in randomized block design (랜덤화 블록 계획법에서 정렬방법과 결합 위치를 이용한 비모수 검정법)

  • Jo, Sungdong;Kim, Dongjae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.95-103
    • /
    • 2013
  • Nonparametric procedure in randomized block design (RBD) was proposed by Friedman (1937) for general alternatives. Also Page (1963) suggested the test for ordered alternatives in RBD. In this paper, we proposed the new nonparametric method in randomized block design using aligned method suggested by Hodges and Lehmann (1962) and the joint placement described in Chung and Kim (2007). Also, Monte Carlo simulation study was adapted to compare the power of the proposed procedure with those of previous procedure.

Preliminary Design Procedure of Electric Starting System for Small GasTurbine Engine (소형 가스터빈엔진 전기시동 시스템 기본설계 절차)

  • Lim, Byeung-Jun;Rhee, Dong-Ho;Jun, Yong-Min;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • For gas turbine engine starting, external power should be supplied with engine to accelerate to suitable rotational speed for air and fuel ignition conditions. Electric starting system for small gas turbine engine has simple system and light weight, so it is generally used for small aircraft. For system analysis of gas turbine engine electric starting system, Characteristics of battery, start motor, engine drag torque should be analyzed and theirs temperature effects should be considered. In this paper, preliminary design procedure of small gas turbine engine electric starting system and major design parameters were described.

  • PDF

Design of Supplemental Dampers for Seismic Reinforcement of Structures (구조물의 내진보강을 위한 부가 감쇠장치의 설계)

  • Kim, Jin-Koo;Choi, Hyun-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.109-119
    • /
    • 2004
  • A design procedure for velocity-dependent supplemental dampers, such as viscous or viscoelastic dampers, required to meet the desired performance objectives was developed using displacement spectra. The amount of supplemental damping required to satisfy given performance limit state was obtained first from the nonlinear static procedure using displacement spectra, then dampers were appropriately distributed throughout the stories to realize the required damping. The proposed method was applied to multi-story steel frames, and the structures were analyzed by time history analysis to validate the accuracy of the design procedure. According to the analysis results the maximum displacements of the model structures retrofitted by the supplemental dampers turned out to be restrained well within the given target values.

Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 개선된 변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

A Bayesian Approach to Assessing Population Bioequivalence in a 2 ${\times}$ 2 Crossover Design

  • Oh, Hyun-Sook;Ko, Seoung-Gon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.67-72
    • /
    • 2002
  • A Bayesian testing procedure is proposed for assessment of bioequivalence in both mean and variance which ensures population bioequivalence under normality assumption. We derive the joint posterior distribution of the means and variances in a standard 2 ${\times}$ 2 crossover experimental design and propose a Bayesian testing procedure for bioequivalence based on a Markov chain Monte Carlo methods. The proposed method is applied to a real data set.

  • PDF

공작기계 구조형태계 설계전문가 시스템을 위한 추론 메커니즘

  • 박지형;강민형;박면웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.720-723
    • /
    • 1995
  • As a part of the configuration design expert system of machine tools, inference mechanisms are constructed in this paper. In addition to procedural inference, the method of multivariable inference is considered as an efficient approach to deal with the cases of highly coupled condition. We propose a generalized multivariable inference procedure. The procedure is applied to the type selection module of the configuration design expert system of machine tools in order to demonstrate the efficiency and validity.

  • PDF