• Title/Summary/Keyword: Design of product

Search Result 6,787, Processing Time 0.035 seconds

Integrated Product Design Development

  • Cho, Moon-Soo;Song, Joon-Yeob
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.81-92
    • /
    • 1997
  • The terminology such as ecology, environment problems, ecosystems, ecofactory, and others related to environmental problems have been recently used in manufacturing systems, since the modern industries have to consider a global ecological crisis. The indifference of recent environmental problems which may be faced now has been paid attention to all engineering areas. In this paper, manufacturing functional requirements such as disassembly, disposal, disposal, or recycling are considered in the integrated product design development, which have not been considered well in the preliminary design stage. Those functions will contribute to reduce the waste and to long the product life cycle, which also satisfies the business benefits and customer requirements. The concurrent design concepts should be applied to integrate all possible factors. Therefore, few practical concurrent engineering tools are presented in here. The objective of this paper is to develop a called green manufacturing systems for integrated product design development by concurrent design concept which can give the desirable result in product design.

  • PDF

Application of Reliability Technology for Sustainable Product Redesign (지속가능한 제품재설계를 위한 신뢰성기법의 적용방법)

  • Lee, Jong-Beom;Jung, Won
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2009
  • One of the recent hot issues in the manufacturing business is how to incorporate environmental attributes into product and process design. Design for environment considers the potential environmental impact of a product throughout its life-cycle. In the case of something breaks, it can become waste immediately, hence reliability and durability is the essential part of product design. This paper presents reliability technology for sustainable product design to improve the product longevity that extends performance life, serviceability and durability. The presented method will help to develop a sound design and avoid weak links to minimize the waste.

  • PDF

Design of reliability critical system using axiomatic design with FMECA

  • Goo, Bongeun;Lee, Joohee;Seo, Suwon;Chang, Daejun;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • In product design, the initial design stage is being increasingly emphasized because it significantly influences the successive product development and production stages. However, for larger and more complex products, it is very difficult to accurately predict product reliability in the initial design stage. Various design methodologies have been proposed to resolve this issue, but maintaining reliability while exploring design alternatives is yet to be achieved. Therefore, this paper proposes a methodology for conceptual design considering reliability issues that may arise in the successive detailed design stages. The methodology integrates the independency of axiomatic design and the hierarchical structure of failure mode, effects, and criticality analysis (FMECA), which is a technique widely used to analyze product reliability. We applied the proposed methodology to a liquefied natural gas fuel gas supply system to verify its effectiveness in the reliability improvement of the design process.

A Construction of Collaborative System Architecture for Supporting Collaborative Design (협력 설계 지원을 위한 협업 시스템 아키텍처 구축)

  • 박홍석;윤인환;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.159-162
    • /
    • 1997
  • Since customer's demand is various and product life cycle is getting shorter, many manufacturing company is trying to reduce product development time and cost. For that reason they make an effort to design product on collaborative environment. The various activities in a product development are highly distributed. This distributed nature of the activities implies that teams will be working indifferent place and technical environments. Thus at a given time, teams might work on he same product from different perspectives. This will require efficient communication amongst the various individuals and the various softwaretools that are used by them. Therefore, there is a need for a computerized frame work that can support distributed design such that participants from different backgrounds collaborate towards one common goal. This paper presents the architecture of a collaborative design system. It then reports on the study of computerized frame work focused on collaboration for product development.

  • PDF

Product Design and Environment (제품설계와 환경)

  • Hong, Soon-Sung
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In the Korean manufacturing industries, it becomes a common practice to carry both design activities and production planning activities concurrently. We should help product design engineers to apply environmental techniques in the design phase. General design engineers are busy enough to provide new technical features and to reduce the product cost. Professionals in the clean technology field should assist the product design engineers by providing the data basis of environmental specifications and appropriate solutions for each product group. This data basis should be easily accessible through internet or other forms appropriate for the personnel computers.

  • PDF

A Study on a Effect of Product Design and a Primary factor of Qualify Competitiveness (제품 디자인의 파급효과와 품질경쟁력의 결정요인에 관한 연구)

  • Lim, Chae-Suk;Yoon, Jong-Young
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.95-104
    • /
    • 2005
  • The purpose of this study is to estimate the determinants of product design and analyze the impacts of product design on quality competitiveness, product reliability, and consumer satisfaction in an attempt to provide a foundation for the theory of design management. For this empirical analysis, this study has derived the relevant measurement variables from a survey on 400 Korean manufacturing firms during the period of $August{\sim}October$ 2003. The empirical findings are summarized as follows: First, the determinants of product design are very significantly (at p<0.001) estimated to be the R&D capability, the level of R&D expenditure, the level of innovative activities(5S, TQM, 6Sigma, QC, etc.). This empirical result can support Pawar and Driva(1999)'s two principles by which the performance of product design and product development can be simultaneously evaluated in the context of CE(concurrent engineering) of NPD(newly product development) activities. Second, the hypothesis on the causality: product design${\rightarrow}$quality competitiveness${\rightarrow}$customer satisfaction${\rightarrow}$customer loyalty is very significantly (at p<0.001) accepted. This implies that product design positively affects consumer satisfaction, not directly but indirectly, by influencing quality competitiveness. This empirical result of this study can also support the studies of for example Flynn et al.(1994), Ahire et at.(1996), Afire and Dreyfus(2000) which conclude that design management is a significant determinant of product quality. The aforementioned empirical results are important in the following sense: the empirical result that quality competitiveness plays a bridging role between product design and consumer satisfaction can reconcile the traditional debate between QFD(quality function development) approach asserted by product developers and conjoint analysis maintained by marketers. The first empirical result is related to QFD approach whereas the second empirical result is related to conjoint analysis. At the same time, the empirical results of this study can support the rationale of design integration(DI) of Ettlie(1997), i.e., the coordination of the timing and substance of product development activities performed by the various disciplines and organizational functions of a product's life cycle. Finally, the policy implication (at the corporate level) from the empirical results is that successful design management(DM) requires not only the support of top management but also the removal of communication barriers, (i.e. the adoption of cross-functional teams) so that concurrent engineering(CE), the simultaneous development of product and process designs can assure product development speed, design quality, and market success.

  • PDF

Statistical Assessment of Biosimilarity based on the Relative Distance between Follow-on Biologics in the (k + 1)-Arm Parallel Design

  • Kang, Seung-Ho;Shin, Wooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.605-613
    • /
    • 2015
  • A three-arm parallel design has been proposed to assess the biosimilarity between a biological product and a reference product using relative distance (Kang and Chow, 2013). The three-arm parallel design consists of two arms for the reference product and one arm for the biosimilar product. This paper extended the three-arm parallel design to a (k + 1)-arm parallel design composed of k (${\geq}3$) arms for the reference product and one arm for the biosimilar product. A new relative distance was defined based on Euclidean distance; consequently, a corresponding test procedure was developed based on asymptotic distribution. Type I error rates and powers were investigated both theoretically and empirically.