• 제목/요약/키워드: Design of a offshore wind

검색결과 255건 처리시간 0.029초

해상풍력 풍력시스템의 관리능력 향상을 위한 데이터베이스 설계에 관한 연구 (A Study on the Design of Database to Improve the Capability of Managing Offshore Wind Power Plant)

  • 김도형;김창석;경남호
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.65-70
    • /
    • 2010
  • As for the present wind power industry, most of the computerization for monitoring and control is based on the traditional development methodology, but it is necessary to improve SCADA system since it has a phenomenon of backlog accumulation in the applicable aspect of back-data as well as in the operational aspect in the future. Especially for a system like offshore wind power where a superintendent cannot reside, it is desirable to operate a remote control system. Therefore, it is essential to establish a monitoring system with appropriate control and monitoring inevitably premised on the integrity and independence of data. As a result, a study was carried out on the modeling of offshore wind power data-centered database. In this paper, a logical data modeling method was proposed and designed to establish the database of offshore wind power. In order for designing the logical data modeling of an offshore wind power system, this study carried out an analysis of design elements for the database of offshore wind power and described considerations and problems as well. Through a comparative analysis of the final database of the newly-designed off-shore wind power system against the existing SCADA System, this study proposed a new direction to bring about progress toward a smart wind power system, showing a possibility of a service-oriented smart wind power system, such as future prediction, hindrance-cause examination and fault analyses, through the database integrating various control signals, geographical information and data about surrounding environments.

Floating offshore wind turbine system simulation

  • ;박현철;정진화;김창완;김영찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.466-472
    • /
    • 2009
  • Offshore wind energy is gaining more and more attention during this decade. For the countries with coast sites, the water depth is significantly large. This causes attention to the floating wind turbine. Offshore wind turbines are designed and analyzed using comprehensive simulation codes that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structures. In this work, a three-bladed 5MW upwind wind turbine installed on a floating spar buoy in 320m of water is studied by using of fully coupled aero-hydro-servo-elastic simulation tool. Specifications of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Certain design load case is investigated.

  • PDF

10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가 (Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System)

  • 박세완;김경환;이강수;박연석;오현석;신형기;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권2호
    • /
    • pp.123-132
    • /
    • 2015
  • 본 연구에서는 10 MW급 부유식 파력-해상풍력 연계형 발전시스템에 설치되는 다수 풍력발전기의 배치 설계를 수행하고, 전산유체역학 해석기법을 통해 다수 풍력발전기의 성능을 평가하였다. 날개요소운동량이론을 기반으로 한 풍력발전 단지 설계용 프로그램 WindPRO를 이용하여, 발전시스템의 적지 환경 풍황조건에 대해 최대에너지를 생산할 수 있는 배치 설계를 도출하였고, ANSYS CFX를 이용하여 다수 풍력발전기간의 후류 간섭영향을 발전기 성능 측면에서 검토하여, 근거리 다수 풍력발전기간의 후류 간섭이 시스템에 미치는 영향을 평가하였다.

Layout optimization for multi-platform offshore wind farm composed of spar-type floating wind turbines

  • Choi, E.H.;Cho, J.R.;Lim, O.K.
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.751-761
    • /
    • 2015
  • A multi-platform offshore wind farm is receiving the worldwide attention for the sake of maximizing the wind power capacity and the dynamic stability at sea. But, its wind power efficiency is inherently affected by the interference of wake disturbed by the rotating blades, so its layout should be appropriately designed to minimize such wake interference. In this context, the purpose of this paper is to introduce a layout optimization for multi-platform offshore wind farm consisted of 2.5MW spar-type floating wind turbines. The layout is characterized by the arrangement type of wind turbines, the spacing between wind turbines and the orientation of wind farm to the wind direction, but the current study is concerned with the spacing for a square-type wind farm oriented with the specific angle. The design variable and the objective function are defined by the platform length and the total material volume of the wind farm. The maximum torque loss and overlapping section area are taken as the constraints, and their meta-models expressed in terms of the design variable are approximated using the existing experimental data and the geometry interpretation of wake flow.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

서해 100MW 해상풍력 실증단지 기상타워 구축사례 (Installation of Meteorological Mast for the Test Bed of Offshore Wind Power)

  • 유무성;강금석;김지영;이준신
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • The final site of offshore wind power plant should be decided by comprehensive examination of various conditions such as wind resource, sea depth, geology, grid connection, social circumstance and environmental issue. Wind condition is typically regarded as the most important factor because wind energy increases in proportion to wind velocity and it directly relates to the amount of power output, efficiency of power plant and profitability. Advanced countries in the offshore wind power sector such as Denmark, UK and Germany, they are analyzing wind resource accurately by installing the meteorological mast in the ocean in order to get the optimal type of wind turbine and maximum generation efficiency. Also, it is made much of designing offshore power plant on the basis of actual measurement by met-mast and those wind farms have a chance to get the loan with reduced interest rate in project financing. In Korea, the HEMOSU-1 is installed in the ocean around Wido island to analyze wind resource of test bed of 100MW offshore wind power on october last year. This paper deals with the design and construction procedure of the first met-mast in Korea and also shows the site characteristics of test bed. Therefore, this paper will give useful information to local governments and private business sector who are trying to construct offshore wind farm and it can also be a good reference for the following projects of meteorological mast in near future.

  • PDF

지반 종류에 따른 고정식 해상 풍력발전기 지진 하중 영향 연구 (Study on the Effect of Earthquake Loads for Fixed Offshore Wind Turbines According to Soil Type)

  • 오용운;김정기;김미선;정종훈;방조혁
    • 풍력에너지저널
    • /
    • 제14권1호
    • /
    • pp.14-20
    • /
    • 2023
  • In this study, using the commercial software Bladed developed by DNV for integrated load calculation of wind turbines, the generation of seismic waves according to soil type based on Korea's domestic regulations, and load calculation considering earthquake conditions were performed according to the IEC standard, and load in the main coordinate system of the fixed offshore wind turbine was calculated. By comparing the calculated load with the design load of the fixed offshore wind turbine, the effect of earthquake loads according to soil type on the main components of fixed offshore wind turbines was evaluated. As a result of the evaluation, when an earthquake load on a wind turbine is considered, the effect of the earthquake load is related to the natural frequency of the major components and the magnitude of the adjacent acceleration in the earthquake response spectrum, and the earthquake load differs according to soil type and may exceed the design load.

자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험 (Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test)

  • 김석태;김동현;강금석;정민욱
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권4호
    • /
    • pp.631-638
    • /
    • 2016
  • 해상풍력발전은 경관 및 소음 등의 문제 및 풍황자원 고갈로 인한 사업부지 확보가 어려운 육상풍력발전의 대안으로 주목받고 있다. 해상풍력은 해상에 풍력터빈을 세우기 때문에 경관 훼손이나 소음으로 인한 민원발생이 적고 상대적으로 풍황자원이 풍부하기 때문에 발전생산성이 높다. 그러나 육상풍력에 비해 해상풍력은 설치비가 높아 경제성이 떨어뜨리는 요인으로 작용한다. 이러한 높은 설치비는 해상작업에 필요한 대형장비의 대여기간과 높은 대여료에서 기인하는데, 본 논문에서는 대형 해상장비의 사용을 최소화하여 설치할 수 있는 해상풍력 지지구조의 개념설계를 수행하였다.

3MW 해상풍력발전기 기초구조물 설계 (Design of Substructure for 3MW Offshore Wind Turbine Demonstrator Project)

  • 변철진;주완돈;정석용;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.185.1-185.1
    • /
    • 2010
  • The 3MW OWEC demonstrator project in Korea will be the first offshore wind project with Korean turbine, Doosan WinDS3000, and constructed on the north-eastern sea of Jeju Island as the water depth of 15m. Integrated loadings of wind and wave are investigated to describe a design loads for both extreme and fatigue conditions using GH-Bladed. A dynamic behaviour of substructure strongly affects a substructure loadings. The jacket structure is designed in accordance with DNV guidelines. The results of this paper show overall design process of offshore substructure as a complex jacket concept and this design process can be implemented on a design of monopile and tripod structures.

  • PDF

파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계 (Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation)

  • 김경환;이강수;손정민;박세완;최종수;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.223-232
    • /
    • 2015
  • 본 연구에서는 부유식 파력-해상풍력 연계형 발전시스템의 기반구조물 개념설계에 대한 내용을 다루고 있다. 세계적으로 해양 신재생에너지에 대한 관심이 커져가고 있다. 파력과 해상풍력은 다른 해양에너지원과 더불어 주요 관심이 되는 에너지원으로서 발전적지가 대체로 일치한다는 특징이 있다. 따라서 파력과 해상풍력을 복합하여 발전하는 시스템은 경제적으로 많은 이점이 있고 이미 여러 나라에서 파력-해상풍력 복합발전 시스템을 개발하고 있다. 이에 따라 우리나라에서도 10MW급의 파력-해상풍력 복합발전 시스템을 개발하기 위한 연구가 수행되었다. 본 연구에서는 다수 풍력발전기와 파력발전기의 배치를 고려하여 반잠수식 구조물이 설계되었다. 또한 설치해역의 환경을 고려하여 계류시스템과 파워케이블이 설계되었다. 본 논문에서는 이러한 복합발전 플랫폼의 개념설계 결과를 제시하고 다양한 발전시스템의 배치를 고려한 설계상의 어려움을 토의하고 설계 방법을 제시한다.