• Title/Summary/Keyword: Design ice load

Search Result 51, Processing Time 0.029 seconds

Prediction of Design Ice Load on Icebreaking Vessels under Normal Operating Conditions (정상운항 상태에서 쇄빙선박에 작용하는 설계 빙하중 추정)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.603-610
    • /
    • 2009
  • Ice load is one of the important design parameters for the construction of icebreaking vessels. In this paper, the design ice load prediction for the icebreaking vessels under normal operating condition in ice-covered sea is discussed. The ice loads under normal operating condition are expected from sea trials in moderate ice conditions. In this sense the extreme ice loads during heavy ramming or accidental collision are not considered. Current study describes the global ice load on the hull of the icebreaking vessels. Available ice load data from full-scale sea trials are collected and analyzed according to various ship-ice interaction parameters including displacement, stem angle, speed of a ship and flexural strength and thickness of sea ice. The ice load prediction formula is compared with the collected full-scale sea trials data and it shows a good agreement.

Analysis of Strain Gauge Data Onboard the IBRV ARAON during Icebreaking Voyage in the Antarctic Sea Ice (쇄빙연구선 ARAON호의 남극해 쇄빙운항 중 계측된 스트레인게이지 데이터 분석)

  • Cheon, Eun-Jee;Choi, Kyungsik;Kim, Ho-Yeon;Lee, Tak-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.489-494
    • /
    • 2014
  • Estimation of correct ice load under various operating conditions is important during the design and the operation stages of an icebreaker. Normal operating conditions are expected from the official field ice trials and also from general ice transit action. In this paper ice load for the Korean icebreaking research vessel, ARAON, under normal operating condition, is discussed. Published ice load data from full-scale sea trials of six icebreakers were analysed to derive an empirical ice load prediction formula. The IBRV ARAON had sea ice trials during 2010 and 2012 summer season. Strain gauge signal were recorded during her icebreaking voyage and the measured strain data were converted to the equivalent hull stress values. The effect of ARAON's speed in ice and the hull stresses are investigated. By comparing the empirical formula and ice load calculation based von measured data, it is recommended to use the empirical ice load estimation formula for the initial design stage.

Ice Load Prediction Formulas for Icebreaking Cargo Vessels (쇄빙상선의 빙하중 추정식 고찰)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • One of the concerns that arise during navigation in ice-covered waters is the magnitude of ice loads encountered by ships. However, the accurate estimation of ice loads still remains as a rather difficult task in the design of icebreaking vessels. This paper focuses on the development of simple ice load prediction formulas for the icebreaking cargo vessels. The maximum ice loads are expected from unbroken ice sheet and these loads are most likely to be concentrated at the bow area. Published ice load data for icebreaking vessels, from the model tests and also from full-scale sea trials, are collected and then several ice load prediction formulas are compared with these data. Finally, based on collected data, a semi-empirical ice load prediction formula is recommended for the icebreaking cargo vessels.

Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load (平坦氷荷重을 받는 細長形 해양구조물의 動的 거동)

  • Choi, Kyung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.

Estimation Method for Ice load of Managed Ice in an Oblique Condition (깨어진 해빙의 사항조건에서 빙 하중 추정법 연구)

  • Kim, Hyunsoo;Lee, Jae-bin
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.184-191
    • /
    • 2018
  • Recently, as sea ice in the Arctic has been decreasing due to global warming, it has become easier to develop oil and gas resources buried in the Arctic region. As a result, Russia, the United States, and other Arctic coastal states are increasingly interested in the development of oil and gas resources, and the demand for offshore structures to support Arctic sea resources development is expected to significantly increase. Since offshore structures operating in Arctic regions need to secure safety against various drifting ice conditions, the concept of an ice-strengthened design is introduced here, with a priority on calculation of ice load. Although research on the estimation of ice load has been carried out all over the world, most ice-load studies have been limited to estimating the ice load of the icebreaker in a non-oblique state. Meanwhile, in the case of Arctic offshore structures, although it is also necessary to estimate the ice load according to oblique angles, the overall research on this topic is insufficient. In this paper, we suggest algorithms for calculating the ice load of managed ice (pack ice, 100% concentration) in an oblique state, and discuss validity. The effect of oblique angle according to estimated ice load with various oblique angles was also analyzed, along with the impact of ship speed and ice thickness on ice load.

An Analysis of Characteristic of Ice Load Distribution on Model Ship due to Ship and Ice Interaction (빙-선체 상호작용 시 모형선에 작용하는 빙하중 분포 특성 분석)

  • Jeong, Seong-Yeob;Choi, Kyungsik;Cheon, Eun-Jee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.478-484
    • /
    • 2015
  • Knowledge about ice load distribution along the ship hull due to ship-ice interaction can provide important background information for the development of design codes for ice-going vessels. The objective of this study is to understand ship and ice interaction phenomena and determine the magnitude of ice load acting along a ship hull. The model tests were performed in the ice model basin in Korea Research Institute of Ships and Ocean engineering (KRISO) with the model of icebreaking ship Araon. Self-propulsion tests in level ice were performed with three difference model ship speeds. In the model tests, three tactile sensors were installed to measure the spatial distribution of ice load acting at different locations on a model ship, such as the bow and shoulder areas. Variation in the distribution of ice load acting on a model hull with ship speed is discussed.

Suggestion of a design load equation for ice-ship impacts

  • Choi, Yun-Hyuk;Choi, Hye-Yeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.386-402
    • /
    • 2012
  • In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.

Modification of Local Ice Load Prediction Formula Based on IBRV ARAON's Arctic Field Data (쇄빙연구선 ARAON호의 북극해 실측 데이터에 기초한 국부 빙하중 추정식의 수정)

  • Cho, Sungrok;Choi, Kyungsik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • This paper focuses on a newly designed ice load formula based on the ARAON's 2016 Arctic field data in order to improve a structural design against ice loads. The strain gage signals from ARAON's hull plating were converted to the local ice pressure upon the hull plating using the influence coefficient matrix and finite element analysis. First, a traditional pressure-area relationship is derived by applying probabilistic approaches to handle the strains measured onboard the ARAON. Then, the local ice load prediction formula is re-analyzed after reviewing the ARAON's additional field data to consider information about the ship speed and thickness of the sea ice. It is shown that the newly developed pressure-area relationship well reflects the influence of other design parameters such as the ship speed and ice thickness in the prediction of local ice loads on Arctic vessels.

Simulation and Energy Cost Calculation of Encapsulated Ice Storage System (캡슐형 빙축열시스템에 대한 운전 시뮬레이션 및 에너지비용 분석)

  • Lee, K.H.;Joo, Y.J.;Choi, B.Y.;Kim, S.J.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.63-73
    • /
    • 1999
  • Ice storage systems are used to shift the peak load in day time into night time in summer. This paper describes a system simulation of partial ice storage system composed of an encapsulated ice storage tank, a screw compressor chiller, a heat exchanger, and a brine pump. For the system simulation, a one-dimensional model of ice storage tank is developed and validated by comparison with the performance data from measurements of an ice storage tank installed at a building. The control strategies considered in this study are chiller priority and storage priority being used commercially. The system is simulated with design cooling load of 600 RT peak load in design day and with off-design day cooling load, and the electric energy costs of the two control strategies for the same system size are compared. As a result of calculation, the energy consumption in a week for storage priority is higher than that for chiller priority control. However due to lower cost of night electric charge rate, energy cost for storage priority control is lower than chiller priority.

  • PDF