• Title/Summary/Keyword: Design flow

Search Result 8,695, Processing Time 0.035 seconds

Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan (실험에 의한 직교류홴의 유량 및 소음 분석)

  • Ahn, Cheol-O;Rew, Ho-Seon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

Blade Shape Design of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Geometry (자오면 고정 형상에서 사류펌프 임펠러 및 디퓨져 날개형상 설계)

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1203-1208
    • /
    • 2009
  • In this paper, the flow characteristics of the mixed-flow pump impellers and diffusers were numerically predicted by commercial CFD software and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. Firstly, the design optimization of the defined impeller geometric variables has been done. After that, the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design of the defined diffuser shape variables has been performed. The reason for the performance improvement was discussed by examining the flow characteristics through the diffuser.

  • PDF

Study of the Flow in Centrifugal Compressor

  • Xu, Cheng;Amano, Ryoichi Samuel
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.260-270
    • /
    • 2010
  • Reducing the losses of the tip clearance flow is one of the keys in an unshrouded centrifugal compressor design and development because tip clearances are large in relation to the span of the blades and also centrifugal compressors produce a sufficiently large pressure rise in single stage. This problem is more acute for a low flow high-pressure ratio impeller design. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range low flow coefficient centrifugal compressor is a great challenge. This paper describes a recent development of high efficiency and wide surge margin low flow coefficient centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in the centrifugal compressor design. The compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A patented three-dimensional low solidity diffuser design method is used and applied to this design. The compressor test results demonstrated to be successful to extend the low solidity diffusers to high-pressure ratio compressor. The compressor stage performance showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The test results are in good agreement with the design.

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

A Study on Aerodynamic Design of a Transonic Mixed-Flow Compressor for UAV (무인항공기용 천음속 사류형 압축기의 공력 설계)

  • Choi, Jae-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.152-160
    • /
    • 2008
  • In the present paper, a transonic mixed-flow compressor that has relatively lower frontal area than that of centrifugal compressors is discussed, and aerodynamic design as well as performance prediction are performed. Main design constraints are compressor exit Mach number of 0.3 and flow angle of 30degrees at the design point, and maximum overall compressor diameter of 177mm, that is 7.0inch. The mass flow rate of design point and pressure ratio are 1.05kg/s and 5.2:1, respectively. The aerodynamic design results show that the transonic compressor designed with forward-swept inducer and curved diffuser can have the target performance with efficiency of 75% within the given constraints. And the compressor exit flow characteristics are discussed here.

Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.172-178
    • /
    • 2011
  • This paper presents an optimization procedure for high-efficiency design of a mixed-flow pump. Optimization techniques based on a weighted-average surrogate model are used to optimize a vane diffuser of a mixed-flow pump. Validation of the numerical results is performed through experimental data for head, power and efficiency. Three-level full factorial design is used to generate nine design points within the design space. Three-dimensional Reynoldsaveraged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximation and solved on hexahedral grids to evaluate the efficiency as the objective function. In order to reduce pressure loss in the vane diffuser, two variables defining the straight vane length ratio and the diffusion area ratio are selected as design variables in the present optimization. As the results of the design optimization, the efficiency at the design flow coefficient is improved by 7.05% and the off-design efficiencies are also improved in comparison with the reference design.

Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate (설계유량을 변수로 한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Preliminary Design Analysis of an Axial-Flow Turbine (축류터어빈의 기초설계 해석)

  • Gu, Sam-Ok;Choe, Dong-Hwan
    • 한국기계연구소 소보
    • /
    • s.14
    • /
    • pp.111-119
    • /
    • 1985
  • A review on the design analysis of an axial-flow turbine is presented. Followed by a brief introduction to the fundamentals on an axial-flow turbine, a design procedure is described with a sample design of one for a small turbo-jet engine. Design procedure is composed of two parts: one-dimensional analysis of three-dimensional effects based on radial equilibrium theory. The method described herein is so simple and rapid that it can be applied to the preliminary design analysis of turbo-machinery equipped with axial-flow turbines.

  • PDF

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.