• Title/Summary/Keyword: Design failure curve

Search Result 142, Processing Time 0.027 seconds

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.

Investigation into Conservatism of Various Fatigue Life Evaluation Procedures Using Round-Notched CT Specimens (원형 노치 CT 시편을 이용한 다양한 피로수명평가 절차의 보수성 평가)

  • Kang, Ju-Yeon;Chang, Dong-Joo;Kim, Jun-Young;Kim, Sang-Eun;Lee, Jong-Min;Huh, Nam-Su;Kim, Jong-Sung;Kim, Jin-Weon;Kim, Yun-Jae;Kim, Dae-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • In this study, to evaluate conservatism of various fatigue life evaluation procedures, fatigue tests were conducted using compact tension (CT) specimens with a round notch, made of A516 Gr.70 carbon steel and A240 TP304 stainless steel, under load-controlled cyclic condition. Experimental fatigue failure cycles were measured and compared with predicted fatigue lives using two different life evaluation methods; (1) Design-By-Analysis (DBA) procedure given in ASME B&PV Code, Sec. III, Div. 1, Subsec. NB-3200 and (2) structural stress-based approach provided in ASME B&PV Code, Sec. VIII, Div. 2, Part 5. To predict fatigue failure cycles, three-dimensional elastic finite element analysis was conducted. Fatigue lives were predicted by both design fatigue curve given in ASME B&PV Code, Sec. III, Div. 1, Appendices and best-fit fatigue curve suggested in NUREG/CR-6815 for the DBA procedure. Finally, fatigue lives evaluated by various methods were compared with test results, and then conservatism between each evaluation procedure was discussed.

Seismic behavioral fragility curves of concrete cylindrical water tanks for sloshing, cracking, and wall bending

  • Yazdabad, Mohammad;Behnamfar, Farhad;Samani, Abdolreza K.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2018
  • Seismic fragility curves of concrete cylindrical tanks are determined using the finite element method. Vulnerabilities including sloshing of contents, tensile cracking and compression failure of the tank wall due to bending are accounted for. Effects of wall flexibility, fixity at the base, and height-diameter ratio on the response are investigated. Tall, medium and squat tanks are considered. The dynamic analysis is implemented using the horizontal components of consistent earthquakes. The study shows that generally taller tanks are more vulnerable to all of the failure modes considered. Among the modes of failure, the bending capacity of wall was shown to be the critical design parameter.

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

Learning Curve of Percutaneous Endoscopic Lumbar Discectomy Based on the Period (Early vs. Late) and Technique (in-and-out vs. in-and-out-and-in) : A Retrospective Comparative Study

  • Ahn, Sang-Soak;Kim, Sang-Hyeon;Kim, Dong-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.6
    • /
    • pp.539-546
    • /
    • 2015
  • Objective : To report the learning curve of percutaneous endoscopic lumbar discectomy (PELD) for a surgeon who had not been previously exposed to this procedure based on the period and detailed technique with a retrospective matched comparative design. Methods : Of 213 patients with lumbar disc herniation encountered during the reference period, 35 patients who were followed up for 1 year after PELD were enrolled in this study. The patients were categorized by the period and technique of operation : group A, the first 15 cases, who underwent by the 'in-and-out' technique; group B, the next 20 cases, who underwent by the 'in-and-out-and-in' technique. The operation time, failure rate, blood loss, complication rate, re-herniation rate, the Visual Analogue Scale (VAS) for back and leg were checked. The alteration of dural sac cross-sectional area (DSCSA) between the preoperative and the postoperative MRI was checked. Results : Operative time was rapidly reduced in the early phase, and then tapered to a steady state for the 35 cases receiving the PELD. After surgery, VAS scores for the back and leg were decreased significantly in both groups. Complications occurred in 2 patients in group A and 2 patients in group B. Between the two groups, there were significant differences in operative time, improvement of leg VAS, and expansion of DSCSA. Conclusion : PELD learning curve seems to be acceptable with sufficient preparation. However, because of their high tendency to delayed operation time, operation failure, and re-herniation, caution should be exercised at the early phase of the procedure.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

An Examination of the Minimum Reinforcement Ratio for Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2017
  • The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code's value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code's value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.