• Title/Summary/Keyword: Design earthquake

Search Result 2,185, Processing Time 0.027 seconds

Behavior of Dams during the 1995 Hyogoken-Nambu Earthquake and Earthquake Resistance of Dams

  • Yamaguchi, Yoshikazu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.3-14
    • /
    • 1999
  • The Hyogoken-Nambu Earthquake of January 17, 1995 inflicted severe damage in the Hanshin and Awaji areas such as has never been seen in Japan in recent years. The safety inspections of the dams conducted in the area by site offices and dam experts immediately after the earthquake showed that there was no damage affecting the safety of the dams although slight damage was observed in several dams. The investigation also revealed that the peak accelerations at dam sites were much smaller than those at soil sites. The Ministry of construction organized the Committee on Evaluattion of Earthquake Resistance of Dams after the earthquake. The Committee confirmed through dynamic analysis that the dams designed in accordance with the present design criteria in Japan are safe under the magnitude of shaking that occurred close the source fault of the Hyogoken-Nambu Earthquake.

  • PDF

A Study on the Application of EQS bearings for the Seismic Isolation of Building Structures by ICT Case study (ICT센터 사례 연구를 통한 EQS의 건축 구조물 면진에의 적용 연구)

  • Yu, Seong-Mun;Lee, You-In;Ji, Yong-Soo;Choi, Dae-Sung;Kim, Doo-Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • An application of the EQS (Eradi Quake System) bearings to a short period building structure and the structure earthquake responses according to the design parameters of the EQS are studied by the ICT Center case study. The features of the EQS application to seismic isolated building structures are investigated, and the design procedure to determine the yield load and the secondary stiffness of the EQS is also studied. A computational analysis is performed to confirm the applicability of the EQS to the building structure and the earthquake responses according to the design parameters. The ICT Center in Indonesia is adopted as an application case of the EQS. The application of the EQS is found to extend the fundamental period of the ICT Center. Three types of EQS with different yield loads and secondary stiffness are designed and applied in the earthquake response analyses. The analysis results show the response of the structure with respect to the design parameters and which type of EQS is suitable for the ICT Center.

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.

Performance-based seismic evaluation and practical retrofit techniques for buildings in China

  • Wang, Hao;Sun, Baitao;Chen, Hongfu
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.487-502
    • /
    • 2022
  • China is prone to earthquake disasters, and the higher seismic performance is required by many existing civil buildings. And seismic evaluation and retrofit are effective measures to mitigate seismic hazards. With the development of performance-based seismic design and diverse retrofit technology for buildings, advanced evaluation methods and retrofit strategies are in need. In this paper, we introduced the evolution of seismic performance objectives in China combined with performance-based seismic design. Accordingly, multi-phase evaluation methods and comprehensive seismic capacity assessment are introduced. For buildings with seismic deficiency or higher performance requirements, the retrofit technologies are categorized into three types: component strengthening, system optimization, and passive control. Both engineering property and social property for the retrofit methods are discussed. The traditional seismic retrofit methods usually are costly and disturbing, and for example in Beijing, seismic strengthening costs approx. 1000 RMB/m2 (for 160 USD/m2), for hospital building even more expensive as 5000 RMB/m2(for 790 USD/m2). So cost-efficient and little disturbance methods are promising techniques. In the end, some opinions about the retrofit strategy and schemes category are shared and wish to discuss the situation and future of seismic retrofit in China.

Earthquake Loss Estimation Including Regional Characteristics (지역특성을 반영한 지진손실평가)

  • Kim, Joon-Hyung;Hong, Yun-Su;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.311-320
    • /
    • 2023
  • When an earthquake occurs, the severity of damage is determined by natural factors such as the magnitude of the earthquake, the epicenter distance, soil properties, and type of the structures in the affected area, as well as the socio-economic factors such as the population, disaster prevention measures, and economic power of the community. This study evaluated the direct economic loss due to building damage and the community's recovery ability. Building damage was estimated using fragility functions due to the design earthquake by the seismic design code. The usage of the building was determined from the information in the building registrar. Direct economic loss was evaluated using the standard unit price and estimated building damage. The standard unit price was obtained from the Korean Real Estate Board. The community's recovery capacity was calculated using nine indicators selected from regional statistical data. After appropriate normalization and factor analysis, the recovery ability score was calculated through relative evaluation with neighboring cities.

Seismic Design in Low or Moderate Seismicity Regions : Suggested A, pp.oaches

  • Kim, Jae-Kwan;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.99-109
    • /
    • 1998
  • Korea is located in either low of moderate seismicity continental region. It is realized that the design codes and underlying design concept of high seismicity region may not be a, pp.opriate to low and moderate seismicity regions. The aim of this paper is to search seismic design concept that is deemed to be a, pp.opriate to low and moderate seismicity regions. To this end, the seismicity of Korea will be introduce first and important aspects of seismic design in moderate seismicity region will be discussed. The two-level code system that is going to be adopted in the future seismic regulations of Korea will be introduced.

  • PDF

Method of Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준에서 요구되는 수평강도의 평가 방법)

  • 한상환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

comparative Study on confinement Steel Amount of RC Column Bent (철근콘크리트 교각 심부구속철근량의 비교연구)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

A Study on the Seismic Response Analysis of Reinforced Concrete Building (철근콘크리트 건물의 지진응답해석에 관한 연구)

  • 한상훈;이상호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.507-512
    • /
    • 1997
  • The objective of present paper is to provide the fundamental data of earthquake-resistance design such as estimating the resistance capacity and evaluating the design seismic load. With one bending failed building, it is checked and compared between real damaged result and analysis value by means of static and dynamic analysis using multi-degree of freedom system. In this analysis, four kinds of the earthquake waves are used. Through elasto-plastic seismic response analysis of reinforced concrete building, we could estimate dynamic behaviour of building.

  • PDF

A Comparative Study on Evaluation of Response spectrum accounting for Soil Types (지반 종류별 응답스펙트럼 평가에 대한 비교 연구)

  • 김선우;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.433-438
    • /
    • 2001
  • The response spectrum has been widely used to differentiate the significant characteristics of earthquake ground motion and to evaluate the response of structures under ground shaking. Current design response spectrum is based on Seed, Ugas, and Lysmer's study. (1976) In this study, earthquake ground motion data sets adopted by Seed, Miranda, and Riddell is analyzed regards to soil types. And how earthquake data sets effected the design response spectrum is evaluated using acceleration-displacement response spectrum.

  • PDF