• Title/Summary/Keyword: Design earthquake

Search Result 2,185, Processing Time 0.02 seconds

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea (국내 액상화 평가를 위한 지진파 선정)

  • Jang, Young-Eun;Seo, Hwanwoo;Kim, Byungmin;Han, Jin-Tae;Park, Duhee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

Weight Drop Impact Tests of Earthquake-Proof Table (내진테이블의 중량물 낙하 충격실험)

  • Eom, Tae Sung;Huh, Seok Jae;Park, Tae Won;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.369-378
    • /
    • 2018
  • Full-scale seismic retrofit of old and deteriorated masonry buildings requires a lot of cost and time. In such buildings, installing an emergency evacuation space can be considered as an alternative. In this study, requirements of the earthquake-proof table used as an emergency evacuation space for buildings hit by earthquake are investigated. Load conditions required for the table, including the impact effects due to building debris drop, are explained. To investigate the impact effects in more detail, weight drop test is performed for an prototype earthquake-proof table. In the test, the weight of the falling object and free fall height were considered as the main test parameters. The results showed that the duration of impact is very short (0.0226~0.0779sec), and thus the impact forces increase to 15.8~45.2 times the weight of the falling object. Based on these results, design considerations and performance verification criteria of the earthquake-proof table as an emergency evacuation space are given.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks (원통형 액체저장 강탱크의 내진설계기준)

  • 국승규;이진호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • While the codifying works or the earthquake resistant design codes for buildings and bridges have been carried out progressively, such works for tank structures are still at the beginning steps. In case of the collapse of tank structures under seismic actions, substantially severe damages are expected due to the spillage of tank contents in addition to the direct economic losses of tanks and contents. Therefore not only the analysis and verification methods for the dynamic behavior of tank structures but also the measures of minimizing the damage propagation should be included in the codes for tank structures. In this paper the design concepts and principles, the analysis and verification methods as well as the measures against the damage propagation are set forth, which are mandatory for the preparation of the earthquake resistant design codes for cylindrical liquid-storage steel tanks.

  • PDF

A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea (우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석)

  • Kim, Jung Han;Kim, Jae Kwan;Heo, Tae Min;Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • Most of seismic design code provisions provide the design response spectra for defining design earthquake ground motions. The design spectra in the code provisions generally come under the 5% of critical damping value, which corresponds to the responses of common structure under the design earthquake. Energy dissipation devices and seismic isolation systems became more popular and the design response spectra at higher damping levels are required. Damping coefficients can be effectively used in conversion of 5%-damped design spectra into other damping levels. These coefficients in the current seismic design code provisions are based on the strong ground motion records. Since the weak and moderate earthquake data have different characteristics from those of strong earthquake data, the application of these coefficients should be investigated in the weak and moderate earthquakes zones. In this study, damping coefficients based on the weak and moderate ground motions were developed and compared to those of current seismic design code provisions.

Amplification Characteristics of Domestic and Overseas Intraplate Earthquake Ground Motions in Korean Soil and Standard Horizontal Design Spectrum for Soil Sites (국내외 판내부 지진기록을 사용한 국내 지반의 지반운동 증폭특성 규명 및 토사지반의 표준설계응답스펙트럼의 제안)

  • Lee, Jin Ho;Kim, Jung Han;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.391-399
    • /
    • 2018
  • The site coefficients in the common requirements for seismic design codes, which were promulgated in 2017, were reevaluated and the standard design spectrum for soil sites were newly proposed in order to ensure the consistency of the standard design spectra for rock and soil sites specified in the common requirements. Using the 55 ground motions from domestic and overseas intraplate earthquakes, which were used to derive the standard design spectrum for rock sites, as rock outcropping motions, site response analyses of Korean soil were performed and its ground-motion-amplification was characterized. Then, the site coefficients for soil sites were reevaluated. Compared with the existing site coefficients, the newly proposed short-period site coefficient $F_a$ increased and the long-period site coefficient $F_v$ decreased overall. A new standard design spectrum for soil sites was proposed using the reevaluated site coefficients. When compared with the existing design spectrum, it could be seen that the proposed site coefficients and the standard design spectrum for soil sites were reasonably derived. They reflected the short-period characteristics of earthquake and soil in Korea.

A Study on the contact surface of Stem and Bellows of Gate Valve in Nuclear Power Plants (원자력발전소 게이트밸브의 스템 - 벨로우즈 접촉면에 관한 연구)

  • Ko, Seok-Hoon;Shim, Dong-Hyouk;Kim, Dae-Youl;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1044-1048
    • /
    • 2006
  • Nuclear power generation is very dangerous in occasion that skirt of structure by earthquake although it is high effective generation that can make a lot of energies with few raw material. when design, it must consider a lot of problems caused by an earthquake. The seismic analysis of the structure has been great concern in the engineering society with an effort to reduce the severe damages from an earthquake. So the earthquake resistant design is one of the crucial design procedures of a gate valve used in nuclear power generation. The gate valve which has the contact area between stem and bellows. Because of the contact area. The gate valve should be given high stress and frictional wear. In this thesis, Considering the gate valve which has some contact distance between stem and bellows. The gate valve which has some contact distance is analyzed by a commercial FEM code of Ansys and Then compared to the gate valve behavior which doesn't have contact distance.

  • PDF