• Title/Summary/Keyword: Design capacity of sanitary sewer

Search Result 2, Processing Time 0.016 seconds

Assessment of Design Method about Sanitary Sewer Network according to RDII and Established Scenario (RDII발생 및 기존 시나리오에 따른 오수간선 네트워크 설계방법 검토)

  • Kim, Jungryul;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.367-374
    • /
    • 2016
  • In this study, the RDII impact on sewer designing in the upstream monitoring area (A site) was considered. Based on the long-term (1/1/2011~12/31/2011) rainfall and flow data consisting of 10-min interval sampling in the nearby design area (B site), the maximum RDII/DWF ratio was selected. The sewer network system at B site was evaluated by the Manning equation. Scenario 1 considering the hourly maximum flow with respect to the flow velocity showed that none of the sewer pipes satisfied the minimum flow velocity condition (0.6 m/s), and 40 pipes did not achieve half of the velocity condition. In scenario 2 considering I/I, 1 the pipes satisfied 0.6 m/s, and 35 pipes showed 0.3 m/s. Scenario 3 reflected the effect of RDII. Velocities in 26 pipes were less than 0.3 m/s, and 4 pipes satisfied the velocity condition. With respect to the allowance rate, 17 pipes were shown to have more than 99%, and none of the pipes satisfied less than 95% of the allowance rate in scenario 1. In scenario 2, 17 Ed: Per the Table pipes showed more than 99% and one pipe showed less than 95%. In scenario 3, 16 pipes showed more than 99% of the allowance rate, and 19 pipes showed less than 95%. Based on these results, it is predicted that deposition would occur due to the slow flow velocity; however, capacity would not be a problem.

Design Flow Velocity Changes According to the Design Flow Determination Methods in the Sanitary Sewer (오수관 설계유량 산정법이 설계유속에 미치는 영향)

  • Hyun, In-hwan;Won, Seung-hyun;Kim, Hyung-jun;Lee, Che-in
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.749-757
    • /
    • 2005
  • The present study analyzed actual cases of designed flow estimation method and designed flow rate of sewage pipe lines. In order to examine the effects of peak-hour demand factor estimation with given daily highest peak loading, we analyzed its effects on designed flow rate with changing the peak-hour demand factor from 2.0 to 10.0. The results of this study are as follows. When reviewing the recent designs, we found that 59.4% of pipe line with 250mm and 300mm diameter, which fall under minimum allowable pipeline did not meet the minimum velocity which is specified as 0.6m/sec in design standards. The pipe line that have minimal access population or have very low slope did not satisfy the minimum velocity. In estimating the designed sewage flow, the applied daily highest peak loading and hourly highest peaking loading were the load factor for the entire population of the planned area, and for the peak loading of the initial pipes connected to a very small population, we applied the same factor as that applied to the entire area and, as a result, the hourly highest flow was underestimated. Because, in case of the initial pipes, the method of applying the same peak loading to all subject areas is highly possible to produce underestimated design flow, when estimating the designed flow of the initial pipes connected to a small population need to adopt a rational flow factor according to the size of population. For this, it is considered to investigate and analyze raw data on daily and hourly variation of sewage flow.