• Title/Summary/Keyword: Design and Operation

Search Result 9,453, Processing Time 0.037 seconds

A PCS Power-sharing Operation Algorithm for Parallel Operation of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Generation Systems (고분자 전해질 연료전지 발전 시스템의 병렬 운전을 위한 PCS 전력 분배 구동 알고리즘)

  • Kang, Hyun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1706-1713
    • /
    • 2009
  • In this paper, a parallel operation algorithm for high power PEMFC generation systems is proposed. According to increasing the capacity of fuel cell systems with several fuel cell stacks, the different dynamic characteristics of each fuel cell stack effect on imbalance of load sharing and current distribution, so that a robust parallel operation algorithm is desired. Therefore, a power-sharing technique is developed and explained in order to design an optimal distributed PEMFC generation system. In addition, an optimal controller design procedure for the proposed parallel operation algorithm is introduced, along with informative simulations and experimental results.

Intelligent CAD System for Cold Forging Using Fuzzy Theory (냉간단조 공정설계를 위한 intelligent CAD system에 관한 연구)

  • 가타야마
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.1-25
    • /
    • 1995
  • This paper deals with the development of an intelligent CAD system for specifying the operation sequence in cold forging. Cold forging technology is facing with various new design requirements. Therefore, it is very important to develop a decision method for the operation sequence, with comparatively high adaptability to the new requirements. An intelligent CAD system which is the uncertain factors in human knowledge into consideration by applying fuzzy theory is established. Various actual design data about were organized, and these organized data were applied to the system as the case base. The system automatically generates the design data of operation sequence such as the forming method and the geometric data of products in each operation stage by the reasoning method applied the fuzzy pattern matching. By comparing the design results in the above system with the actual design data of a human expert, this paper presents that our method is useful for practical application.

Optimal design and operation of a turbo blower used for refuse collection system (생활폐기물 관로이송용 터보블로어 운전 및 설계 최적화 연구)

  • Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.58-63
    • /
    • 2010
  • Optimal operation of turbo blowers connected in serial is analyzed by experimental measurements and numerical simulation with three-dimensional Navier-Stokes equations. The turbo blower system considered in the present study is widely used for the refuse collection system. Design optimization of the turbo blower using some design variables is also studied to enhance the performance of the blower. Throughout numerical simulation, it is found that the input energy reduction by optimal operation of the turbo blowers with the proper changes of the rotor's rotating frequency can be reduced a input energy for operating the blower system compared to the conventional on-off operation method theoretically. It is also found that the optimal design method is effective to enhance the performance of the turbo blower.

Optimized Module Design for Berth Planning of Logistics Information System Using Tabu Search Algorithm (타부탐색을 이용한 물류정보시스템의 선석계획 최적화 모듈 설계)

  • Hong, Dong-Hee;Kim, Chang-Gon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.63-70
    • /
    • 2004
  • Port operation is largely divided into gate operation, yard operation and berth operation. Operation strategy and optimal resource allocation for three parts are important in the productivity of the port operation.. Especially the resource allocation planning in berth operation needs optimization, because it is directly connected with the processing time in shipping. Berth planning is not independent on recourse allocation but interrelated with yard stacking area allocation. Therefore, we design the optimized module of berth planning and give priority to interrelationship with yard space allocation, while existing studies design independent resource allocation in berth planning. We suggest constraints by mathematical method, and they are related to yard stacking area allocation with existing constraints. Then we look for solutions, use tabu search to optimize them, and design optimized the berth planning module. In the performance test of optimized module design of berth planning, we find that the berth planning with yard stacking area allocation takes less processing time than without yard stacking area allocation.

Design and Operation of Acceptance Control Chart Using Variable Acceptance Sampling Scheme Based on Operating Characteristics(OC) Curve (계량 규준형 샘플링 검사 스킴을 이용한 합격판정 관리도의 설계 및 운영)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.443-450
    • /
    • 2008
  • This paper is to present design principle and operation strategy of acceptance control chart by the use of OC-Based sampling inspection for continuous data. The unified control limits for acceptance control chart when considering both APL(Acceptable Process Level) and RPL(Rejectable Process Level) are proposed. The control limits can be also extended to the acceptance control chart with unknown process standard deviation.

  • PDF

Development of the CAD/CAM System for CNC Universal Cylindrical Grinding Machines (CNC 만능 원통연삭기의 CAD/CAM 시스템 개발)

  • 조재완;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.312-318
    • /
    • 2000
  • In this study, an exclusive CAD/CAM system is developed for enhancing the effectiveness and productivity of CNC universal cylindrical grinding machines on which the external/facing/internal grinding cycles and the wheel dressing cycles are integratively carried out. The CAD/CAM system can manage the various processes such as geometry design, NC code generation, NC code verification, DNC operation, and so on. Especially, the feature-based modeling concept is introduced to improve the geometry design efficiency. And the NC code verification is realized by virtual manufacturing technique based on the real-time analysis of NC codes and the boolean operation between workpiece and wheel.

  • PDF

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 1 - Performance Analysis Program (마이크로 가스터빈 설계 및 운전 성능 분석 : 제1부 - 성능해석 프로그램)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, an in-house program to predict steady state operation of micro gas turbines is constructed using MATLAB. The program consists of two parts: design and off-design simulations. The program is fully modular in its structure, and performance of each component (compressor, combustor, turbine, recuperative heat exchanger and pipe elements) is calculated in a separate calculation module using mass and energy balances as well as models for off-design characteristics. The off-design modules of compressor and turbine use performance maps, which are program inputs. The off-design operation of a micro gas turbine under development was predicted by the program. The prediction results were compared with those by commercial software, and the validity of the in-house program was confirmed.

The Optimal Operation Condition and Estimation Performance for 300MW Demonstration Gasifier (300MW급 실증 가스화기의 최적 운전조건 및 성능 예측)

  • Yoo, Jeong-Seok;Koo, Ja-Hyung;Paek, Min-Su;Lee, Hwang-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.368-371
    • /
    • 2008
  • The optimal operation condition of gasifier is one of the most important parameters to increase efficiency and reliability in IGCC plant. Also the prediction of the syngas composition and quantity must be predicted to carry out process design of the gasification plant. However, the gasifier process licensor are protective with information on process design and optimal gasifier design conditions. So, the most of process studies in the engineering company for gasification plant have carried out to look for key parameters and optimal design conditions using several prediction methods. In this paper, we present the estimated preliminary optimal operation condition of the 300MW Demonstration Entrain Flow Gasifier using Aspen Plus. The gasifier operation temperature considering slag flow was predicted by FactSage software and Annen Model.

  • PDF

Design of a Block Logistics Operating System in Shipbuilding Industry Based on Axiomatic Design (공리적 설계를 통한 조선 산업에서의 블록 물류 운영 시스템 설계)

  • Son, Jung-Ryoul;Ha, Byung-Hyun
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.2
    • /
    • pp.75-93
    • /
    • 2014
  • We deal with the design of the effective block logistics operating system in shipyard. The block logistics operation is one of the critical managerial problems in shipbuilding. The block logistics operation in shipyard consists of storage operation for temporary storage in the limited storage area and transfer equipment operation of blocks from the given storage area to next process according to the block production schedule. We propose a design method of block logistics operating system based on the axiomatic design and IDEF0 method. As a result of axiomatic design, system functions are determined regarding implementation sequence. We validated the proposed design by implementation of a block logistics operating system for a large scale shipyard.