• Title/Summary/Keyword: Design Variables

Search Result 7,228, Processing Time 0.037 seconds

Effects of Silencer Design on the Performance of Jet-fan (제트홴 소음기 형상이 성능에 미치는 영향)

  • Oh, In-Gyu;Choi, Young-Seok;Kim, Joon-Hyung;Yang, Sang-Ho;Kwon, Oh-Myoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.25-29
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of silencer design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the Design of Experiments method have been applied. Two geometric variables, i.e., cap size and silencer length, were employed to improve the performance of the jet fan. The objective functions of the jet fan are defined as the effective velocity and total efficiency at the operating condition. Based on the results of computational analyses, the flow characteristics were discussed. The effect of silencer with a specific roughness on the performance was also discussed.

Evaluation of the Forging Process by the Application of Optimization Technology (최적화기법의 적용을 통한 냉간단조품의 성형공정 평가)

  • Yeo H.T.;Park K.H.;Hur K.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.226-231
    • /
    • 2006
  • The fuel injector is a pa.1 that controls the fuel supply of automotive engine. The housing of the fuel injector supports the rod, the needle valve and the solenoid. In this study, the rigid-plastic FE-analysis by using the design of experiments (DOE) and the response surface methodology (RSM) has been performed to produce the product reducing the under-fill and the maximum effective strain. From the results of DOE, the stem of counter punch and the face angle of punch at the $1^{st}$ process, and the stem of punch at the $2^{nd}$ process were determined as the significant design variables far each response such as the upper under-fill, lower under-fill and the maximum effective strain. From the results of RSM, the optimal values of the design variables have been also determined by simultaneously considering the responses.

A Study on Profile Ring Rolling Process of Titanium Alloy (타이타늄합금 형상 링 압연공정 연구)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Process Design and Selection of Operating Conditions for SMART System (SMART 시스템의 공정설계 및 조업조건 선정)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • To check feasibility of SMART(Steam Methane Advanced Reforming Technology) system, conceptual design and sensitivity analysis of operating variables have been performed based on the design program of two-interconnected fluidized beds. Among three configurations of two-interconnected fluidized beds systems, the bubbling-bubbling system was selected as the best configuration. Process design results indicate that the SMART system is compact and feasible. Based on the selected operating conditions, the effects of variables such as process capacity, pressure, and weight percent of $CO_2$ absorbable component have been investigated as well.

The Optimal Parameter Decision of$\beta$ carotene Mass Production Using Taguchi Method (다구찌 방법을 이용한 $\beta$-carotene 대량생산의 최적환경 조건 결정)

  • 조용욱;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 2000
  • The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, the most economical product and process design from both manufacturing and customers' viewpoints can be accomplished at the smallest, affordable development cost. Many companies, big and small, high-tech and low-tech, have found the Robust Design method valuable in making high-quality products available to customers at a low competitive price while still maintaining an acceptable profit margin. A study to analyze and solve problems of a biochemical process experiment has presented in this paper. We have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

Characterization of Negative Photoresist Processing by Statistical Design of Experiment (DOE)

  • Mun Sei-Young;Kim Gwang-Beom;Soh Dea-Wha;Hong Sang Jeen
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.191-194
    • /
    • 2005
  • SU-8 is a epoxy based photoresist designed for MEMS applications, where a thick, chemically and thermally stable image are desired. However SU-8 has proven to be very sensitive to variation in processing variables and hence difficult to use in the fabrication of useful structures. In this paper, negative SU-8 photoresist processed has been characterized in terms of delamination, based on a full factorial designed experiment. Employing the design of experiment (DOE), a process parameter is established, and analyzing of full factorial design is generated to investigate degree of delamination associated with three process parameters: post exposure bake (PEB) temperature, PEB time, and exposure energy. These results identify acceptable ranges of the three process variables to avoid delamination of SU-8 film, which in turn might lead to potential defects in MEMS device fabrication.

Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams (유연보의 진동제어를 위한 구조계와 제어계의 동시최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.

Performance Characteristics according to the Outlet Impeller Blade Shape of a Centrifugal Blower (원심블로어 임펠러 토출 날개 형상에 따른 성능특성)

  • Lee, Jong-Sung;Jeon, Hyun-Jun;Jang, Choon-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • This paper presents the performance characteristics of a centrifugal blower using the design parameters of an impeller blade. Two design variables, the bending length from the blade trailing edge and bending angles of an impeller blade, are introduced to analyze the effects on the blower performance. Three-dimensional Navier-Stokes equations with shear stress transport turbulence model are introduced to analyze the performance and internal flow of the blower. Relatively good agreement between experimental measurements and numerical simulation at the design flow condition is obtained. Throughout present study, it is known that pressure increases as the bending length from the trailing edge and bending angle increase while efficiency decreases. But efficiency is decreased. Detailed flow field inside the centrifugal blower is also analyzed and compared.

Shape Optimization of Axial Flow Fan Blade Using Surrogate Model (대리모델을 사용한 축류송풍기 블레이드의 형상 최적화)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques (신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.