• Title/Summary/Keyword: Design Speed

Search Result 9,512, Processing Time 0.036 seconds

Estimation of Basic Wind Speeds Reflecting Recent Wind Speed Data (최신 풍속자료를 반영한 기본풍속 산정)

  • Choi, Sang-Hyun;Seo, Kyung-Seok;Sung, Ik-Hyun;Lee, Su-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • Recent increase in the strength and frequency of typoons due to climate change claims reconsideration of the design wind load in existing design codes for civil engineering structures in which the basic wind speed is estimated based on meteorological data by mid 1990s. In this paper, based on wind speed data at 76 observatories in Korea from 1961 through 2008, the basic wind speeds which can be utilized in designing civil engineering structures including buildings and bridges are estimated using the statistical process. The return period of the wind speed for each location is determined using the Gumbel distribution. The results for considered locations are compared to the existing design codes. Also, for design applications, the wind speed map, which classifies the country into four basic wind speed zones, is proposed using the resulting basic wind speeds.

A Study on the Hull Form Design of High-Speed Trimaran (고속 삼동선형 설계에 관한 연구)

  • 이영길;최동섭;김규석
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.60-71
    • /
    • 2004
  • Nowadays, We have had a growing interest in high-speed vessels' because it is very important to save time and cost in marine transportation. The development of hull form for high-speed vessels is high priority to secure the competitive power for the transportation of cargos. Therefore, the demand of the high-speed vessels is gradually increased, but the conventional hull forms are limited by rapidly increasing resistance upon the increase of ship speed in high-speed region. Therefore, new concepts for the hull form of high-speed vessels have been requested. One of the derived hull forms for that demand is the hull form of trimaran type. Trimaran has a very slender main hull as compared with conventional single hull so that is reduced in wave resistance. The slender main hull has the undesirable characteristics of stability, but two side hulls make up for the week points in the stability. That is, trimaran is able to have desirable performances for the resistance and stability. In this paper, for the design of 200TEU class container vessel with trimaran type, which will be cruised in Yellow-Sea region, firstly a preliminary hull is designed, and the model test is carried out with the variation of side hull position. From the experience of the preliminary hull form design, an improved hull form for the 200TEU container are designed, and the model tests are carried out. Also, a numerical computation technique is adopted for the simulation of flow phenomena around the designed hull forms. The final hull form is compared with existing ships for the resistance performance from the computation with computer and ship model tests.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

A Study on a Sensitivity Analysis of Design Parameters for the Speed-up of Overhead Rigid Conductor System (강체전차선로 고속화를 위한 설계파라미터 민감도 분석 연구)

  • Lee, Kiwon;Cho, Yong Hyeon;Kwon, Sam-Young;Park, Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.453-458
    • /
    • 2017
  • R-Bar (Overhead Rigid Conductor system) has been lately used for the speed of over 200km/h in Europe, while it has been developed and used for the max. speed of 120km/h in Korea. Because R-Bar has advantages of reduction of tunnel cross sectional area and maintenance, its development for more high-speed is urgent in Korea having many mountain area. Therefore a sensitivity analysis of design parameters for the speed-up of R-Bar has performed in this study. For the analysis, we have developed a program for the prediction of dynamic characteristics between a pantograph and R-Bar. The program was evaluated with the actual test result and a current collection performance according to the parameters such as a distance between brackets, a stiffness of bracket and of R-Bar rail was predicted with the program.

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

Study on the Design of Shaft Strut for Naval Ships with Twin Screw (2축 함정의 스트럿 설계에 관한 고찰)

  • 박명규;신영균
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2002
  • High speed naval ships are configured with open shafts The shafts, bearings, and propellers are supported by shaft struts. Proper design of struts involves issues of structural, vibration, and hydrodynamic analysis and design. Strut arm cavitation in high speed occurs because of a misalignment of the strut arm with the local incident flow. Proper selection of the strut section can minimize the generation of cavitation. This paper describes issues in the design struts and notices based on the design of Patrol Craft and Amphibious Ship.

  • PDF

Shape Design for a Inline-Skate Frame (인 라인 스케이트 프레임의 형상 설계)

  • Kim S.C.;Jee H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • In-line skate generally consists of four major parts: boot, frame, bearing and wheel, and the most important part among those for necessary functionality is the frame. It is the most expensive, and it also makes a decisive role in practical race skating. The functional behavior of a frame is greatly affected by external dynamic forces as well as the static weight of a skater. We are proposing a new inline speed-skating frame design that has been improved in structural strength and weight for providing optimum speed in $20\sim40km$ marathon skating.

A Study on Design of KHST trailer car with Aluminum Bodyshell (한국형 고속전철 객차 차체 설계에 관한 연구)

  • 장동화;박광복;장대성;이장욱
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.491-498
    • /
    • 2000
  • This study was carried out about the design and FEM analysis of articulated Trailer car with aluminum bodyshell for Korean High Speed Train of maximum operating speed of 350㎞/h. The integral design by extra-long extruded sections made possible through the use of aluminium alloys and continuous window shape with skin were adopted in the design of aluminium bodyshell. Articulated structures in each trailer's end were bolted laterally on end structure. FEM analysis showed that the design satisfied the specified load criteria. This study describes process and result of development of aluminum trailer bodyshell for KHST.

  • PDF

A Study on Driver Perception-Reaction Time in High-Speed Driving Situations (고속주행상황의 운전자 인지·반응시간에 관한 연구)

  • Choi, Jaisung;Jeong, Seungwon;Kim, Jeongmin;Kim, Taeho;Shin, Joonsoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.107-119
    • /
    • 2017
  • PURPOSES : The desire of drivers to increase their driving speeds is increasing in response to the technological advancements in vehicles and roads. Therefore, studies are being conducted to increase the maximum design speed in Korea to 140 km/h. The stopping sight distance (SSD) is an important criterion for acquiring sustained road safety in road design. Moreover, although the perception-reaction time (PRT) is a critical variable in the calculation of the SSD, there are not many current studies on PRT. Prior to increasing the design speed, it is necessary to confirm whether the domestic PRT standard (2.5 s) is applicable to high-speed driving. Thus, in this study, we have investigated the influence of high-speed driving on PRT. METHODS : A driving simulator was used to record the PRT of drivers. A virtual driving map was composed using UC-Win/Road software. Experiments were carried out at speeds of 100, 120, and 140 km/h while assuming the following three driving scenarios according to driver expectation: Expected, Unexpected, and Surprised. Lastly, we analyzed the gaze position of the driver as they drove in the simulated environment using Smarteye. RESULTS : Driving simulator experimental results showed that the PRT of drivers decreased as driving speed increased from 100 km/h to 140 km/h. Furthermore, the gaze position analysis results demonstrated that the decrease in PRT of drivers as the driving speed increased was directly related to their level of concentration. CONCLUSIONS : In the experimental results, 85% of drivers responded within 2.0 s at a driving speed of 140 km/h. Thus, the results obtained here verify that the current domestic standard of 2.5 s can be applied in the highways designated to have 140 km/h maximum speed.

Effect of Traffic Calming Using Speed-Maintained Standardization on Environment-Friendliness of Downward Slope Location based on GHG Emission Indicators (자연친화적인 급내리막 직선부에서 GHG 배출지표에 근거한 속도유지표준화 형태의 교통정온화)

  • Hong, Su-Jeong;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • PURPOSES: In this paper, the effectiveness of speed-maintained standardization in road geometry on environmental impact at a downward slope location, based on greenhouse gas (GHG) emission indicators, was studied. Specifically, the aim of this study was to ascertain whether speed-maintained standardization resulted in decreased $CO_2$ emissions as well as noise pollution, due to reduced vehicle speeds. METHODS : In this study, speed-maintained standardization in road geometry was proposed as a means to reduce vehicle speeds, with a view to reducing $CO_2$ emissions and noise pollution. This technique was applied at a downward slope location. The vehicle speeds, $CO_2$ emissions, and noise levels before and after application of speed-maintained standardization were compared. RESULTS: It was found that speed-maintained standardization was effective as a means to reduce speed, as well as $CO_2$ emissions and noise pollution. By applying speed-maintained standardization, it was confirmed that vehicle speeds were reduced consistently. As a result, $CO_2$ emissions and noise levels were decreased by 9% and 11%, respectively. CONCLUSIONS : This study confirmed that speed-maintained standardization in road geometry is effective in reducing vehicle speeds, $CO_2$ emissions, and noise levels. Moreover, there is further scope for the application of this method in the design of roads in urban and rural areas, as well as in the design of highways.