• 제목/요약/키워드: Design Spectral Acceleration

검색결과 89건 처리시간 0.028초

국내 과실의 택배 유통환경 특성 (Characteristics of Domestic Distribution Environment for Parcel Delivery Service of Fruits)

  • 정현모;김수일
    • 한국포장학회지
    • /
    • 제21권2호
    • /
    • pp.61-65
    • /
    • 2015
  • Agricultural products packaged for transportation are put in the various dangerous environments owing to the damage factors like vibration, shock, compression, climate etc. under the distribution process. On fruits packaging for transportation, especially, the shock and vibration is considered as the most important damage factors. A major cause of shock damage to fruits is drops during manual handling. Especially, the damages of fruits during the parcel delivery service are very serious. The parcel delivery services of fruits are increasing and contribute to increasing of farm house earning. Also, the freight vehicle is mostly used to transport the fruits. Shock and impact generated by the freight vehicle may give serious damage to fruits. The optimum packaging design of parcel delivery service of fruits during transportation is required to reduce the fruits damages. In order to design the packaging system for parcel delivery service of fruits considering the transportation environment, the comprehension of characteristics for vibration and shock generated by manual handling and acting on transportation vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) during the parcel delivery service of fruits. The overall level of recommended PSD profile in a specific transportation of parcel delivery service for fruits was $0.63G_{rms}$.

  • PDF

Seismic performances of three- and four-sided box culverts: A comparative study

  • Sun, Qiangqiang;Peng, Da;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.49-63
    • /
    • 2020
  • Studying the critical response characteristics of box culverts with diverse geometrical configurations under seismic excitations is a necessary step to develop a reasonable design method. In this work, a numerical parametric study is conducted on various soil-culvert systems, aiming to highlight the critical difference in the seismic performances between three- and four-sided culverts. Two-dimensional numerical models consider a variety of burial depths, flexibility ratios and foundation widths, assuming a visco-elastic soil condition, which permits to compare with the analytical solutions and previous studies. The results show that flexible three-sided culverts at a shallow depth considerably amplify the spectral acceleration and Arias intensity. Larger racking deformation and rocking rotation are also predicted for the three-sided culverts, but the bottom slab influence decreases with increasing burial depth and foundation width. The bottom slab combined with the burial depth and structural stiffness also significantly influences the magnitude and distribution of the dynamic earth pressure. The findings of this work shed light on the critical role of the bottom slab in the seismic responses of box culverts and may have a certain reference value for the preliminary seismic design using R-F relation.

Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

  • Abdel Raheem, Shehata E.;Abdel Aal, Elsayed M.;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.209-219
    • /
    • 2022
  • Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

The comparison of sectional damages in reinforced-concrete structures and seismic parameters on regional Basis; a case study from western Türkiye (Aegean Region)

  • Ercan Isik;Hakan Ulutas;Aydin Buyuksarac
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.37-51
    • /
    • 2023
  • Türkiye has made significant changes and updates in both seismic risk maps and design codes over time, as have other countries with high seismic risk. In this study, the last two seismic design codes and risk maps were compared for the Aegean Region (Western Türkiye) where the earthquake risk has once again emerged with the 2020 Izmir Earthquake (Mw=6.9). In this study, information about the seismicity of the Aegean Region was given. The seismic parameters for all provinces in the region were compared with the last two earthquake risk maps. The spectral acceleration coefficients of all provinces have increased and differentiated with the current seismic hazard map as a result of the design spectra used on a regional basis have been replaced by the geographical location-specific design spectra. In addition, section damage limits were obtained for all provinces within the scope of the last two seismic design codes. Structural analyses for a sample reinforced-concrete building were made separately for each province using pushover analysis. The deformations in the cross-sections were compared with the limit states corresponding to the damage levels specified in the last two seismic design codes for the region. Target displacement requests for all provinces have decreased with the current code. The differentiation of geographical location-specific design spectra both in the last two seismic design code and between provinces has caused changes in section damages and building performance levels. The main aim of this study is to obtain and compare both seismic and structural analysis results for all provinces in the Aegean Region (Western Türkiye).

초고층 구조물의 지진해석을 위한 지진기록의 조정방법 (Scaling Method of Earthquake Records for the Seismic Analysis of Tall Buildings)

  • 김태호;박지형;김욱종;이도범;고현
    • 한국지진공학회논문집
    • /
    • 제12권5호
    • /
    • pp.11-21
    • /
    • 2008
  • 최근 감쇠장치 등을 가진 초고층 건축물의 지진해석에 시간이력해석법이 자주 사용되고 있다. 지진기록은 구조물의 기본 진동주기를 T라 할 때 설계기준에서 요구하는 바와 같이 0.2T에서 1.5T 사이의 스펙트럼 값을 설계응답스펙트럼에 부합하게 조정되어 사용되고 있다. 설계기준에서 제시한 방법으로 조정할 경우 주기가 길어질수록 두 해석법 사이의 응답차이는 커지는 현상이 발생한다. 즉 설계기준에 의하여 조정된 지진기록을 사용하여 시간이력해석을 수행하면 밑면전단력 등은 비슷하지만 변위, 층간변위, 부재력 등은 적게 평가되는 현상이 발생하였다. 이들 결과에 밑면전단력 조정계수를 적용하면 응답이 더욱 작아지는 것을 확인하였다. 이에 본 연구에서는 인공지진을 만드는 데 어려움이 있는 엔지니어들을 위하여 기존 설계기준에 부합하는 지진기록 조정방법을 제시하였다.

내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (I) 데이터베이스 및 지반응답해석 (Site Classification and Design Response Spectra for Seismic Code Provisions - (I) Database and Site Response Analyses)

  • 조형익;;김동수
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.235-243
    • /
    • 2016
  • Korea is part of a region of low to moderate seismicity located inside the Eurasian plate with bedrock located at depths less than 30 m. However, the spectral acceleration obtained from site response analyses based on the geologic conditions of inland areas of the Korean peninsula are significantly different from the current Korean seismic code. Therefore, suitable site classification scheme and design response spectra based on local site conditions in the Korean peninsula are required to produce reliable estimates of earthquake ground motion. In this study, site-specific response analyses were performed at more than 300 sites with at least 100 sites at each site categories of $S_C$, $S_D$, and $S_E$ as defined in the current seismic code in Korea. The process of creating a huge database of input parameters - such as shear wave velocity profiles, normalized shear modulus reduction curves, damping curves, and input earthquake motions - for site response analyses were described. The response spectra and site coefficients obtained from site response analyses were compared with those proposed for the site categories in the current code. Problems with the current seismic design code were subsequently discussed, and the development and verifications of new site classification system and corresponding design response spectra are detailed in companion papers (II-development of new site categories and design response spectra and III-Verifications)

Proposal of new ground-motion prediction equations for elastic input energy spectra

  • Cheng, Yin;Lucchini, Andrea;Mollaioli, Fabrizio
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.485-510
    • /
    • 2014
  • In performance-based seismic design procedures Peak Ground Acceleration (PGA) and pseudo-Spectral acceleration ($S_a$) are commonly used to predict the response of structures to earthquake. Recently, research has been carried out to evaluate the predictive capability of these standard Intensity Measures (IMs) with respect to different types of structures and Engineering Demand Parameter (EDP) commonly used to measure damage. Efforts have been also spent to propose alternative IMs that are able to improve the results of the response predictions. However, most of these IMs are not usually employed in probabilistic seismic demand analyses because of the lack of reliable Ground Motion Prediction Equations (GMPEs). In order to define seismic hazard and thus to calculate demand hazard curves it is essential, in fact, to establish a GMPE for the earthquake intensity. In the light of this need, new GMPEs are proposed here for the elastic input energy spectra, energy-based intensity measures that have been shown to be good predictors of both structural and non-structural damage for many types of structures. The proposed GMPEs are developed using mixed-effects models by empirical regressions on a large number of strong-motions selected from the NGA database. Parametric analyses are carried out to show the effect of some properties variation, such as fault mechanism, type of soil, earthquake magnitude and distance, on the considered IMs. Results of comparisons between the proposed GMPEs and other from the literature are finally shown.

PPG를 이용한 심혈관 질환 예측 시스템의 설계 및 구현 (Design and Implementation of a Prediction System for Cardiovascular Diseases using PPG)

  • 송제민;진계환;서성보;박정석;이상복;류근호
    • 한국방사선학회논문지
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2011
  • 광용적맥파(photoplethysmogram, PPG)는 심장의 수축과 이완으로 변화하는 혈액용적(blood volume)과 혈액내의 헤모글로빈에 흡수되는 빛의 양의 선형적 관계를 이용하여 신호를 획득하는 방법이다. 본 논문에서는 PPG 센서를 이용하여 질환 예측을 할 수 있는 시스템을 제안하였다. 본 시스템은 PPG 센서를 이용하여 심박수의 변이를 살펴볼 수 있는 심박수 변이 분석과 이전 심박수와 이후 심박수를 구분지어 그래프로 표현하는 심박수 분포를 보여준다. 또한 심박수를 스펙트럼 분석하여 자율신경계 균형도, 가속도 맥파로부터 혈관 상태를 분석하여 심혈관 질환을 조기 예측하는 개인용 컴퓨터 기반의 시스템을 설계하고 구현하였다.

Identifying significant earthquake intensity measures for evaluating seismic damage and fragility of nuclear power plant structures

  • Nguyen, Duy-Duan;Thusa, Bidhek;Han, Tong-Seok;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.192-205
    • /
    • 2020
  • Seismic design practices and seismic response analyses of civil structures and nuclear power plants (NPPs) have conventionally used the peak ground acceleration (PGA) or spectral acceleration (Sa) as an intensity measure (IM) of an earthquake. However, there are many other earthquake IMs that were proposed by various researchers. The aim of this study is to investigate the correlation between seismic responses of NPP components and 23 earthquake IMs and identify the best IMs for correlating with damage of NPP structures. Particularly, low- and high-frequency ground motion records are separately accounted in correlation analyses. An advanced power reactor NPP in Korea, APR1400, is selected for numerical analyses where containment and auxiliary buildings are modeled using SAP2000. Floor displacements and accelerations are monitored for the non- and base-isolated NPP structures while shear deformations of the base isolator are additionally monitored for the base-isolated NPP. A series of Pearson's correlation coefficients are calculated to recognize the correlation between each of the 23 earthquake IMs and responses of NPP structures. The numerical results demonstrate that there is a significant difference in the correlation between earthquake IMs and seismic responses of non-isolated NPP structures considering low- and high-frequency ground motion groups. Meanwhile, a trivial discrepancy of the correlation is observed in the case of the base-isolated NPP subjected to the two groups of ground motions. Moreover, a selection of PGA or Sa for seismic response analyses of NPP structures in the high-frequency seismic regions may not be the best option. Additionally, a set of fragility curves are thereafter developed for the base-isolated NPP based on the shear deformation of lead rubber bearing (LRB) with respect to the strongly correlated IMs. The results reveal that the probability of damage to the structure is higher for low-frequency earthquakes compared with that of high-frequency ground motions.

국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가 (Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea)

  • 임승현;김건규;최인길;곽신영
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.