• Title/Summary/Keyword: Design Response Spectrum

Search Result 463, Processing Time 0.026 seconds

A review of fixed offshore platforms under earthquake forces

  • Hasan, Syed Danish;Islam, Nazrul;Moin, Khalid
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.479-491
    • /
    • 2010
  • Advances in geological studies, have identified increased seismic activity in the world's ocean once believed to be far from seismic hazards. The increase in demand of oil and other hydrocarbons leaves no option but to install a suitable offshore platform on these seismically sensitive offshore basins. Therefore, earthquake based design criteria for offshore structures are essential. The focus of the present review is on various computational techniques involved for seismic response study. The structural and load modeling approaches, the disturbed fluid-structure and soil-structure interaction as well as hydrodynamic damping due to earthquake excitation are also discussed. A brief description on the reliability-based seismic design approach is also presented.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

A Study on the Applicability of Amplification Factor to Estimate Peak Ground Acceleration of Pohang Area (국내 내진설계기준의 지반증폭계수를 활용한 포항지역의 지표면 최대가속도 산출 적절성 검토)

  • Kim, Jongkwan;Han, Jin-Tae;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.21-33
    • /
    • 2020
  • Ground response analysis has been conducted for each borehole data in Pohang area, using 1D equivalent linear method program, to investigate the applicability of amplification factor to estimate peak ground acceleration. Earthquake motions for ground response analysis were prepared by matching response spectrums for return period of 500, 1000, and 2400 years suggested by seismic design code (MOIS, 2017). Ground survey data were acquired from Geotechnical Information DB System. It has been confirmed that response spectrum obtained from ground response analysis showed good agreement with those from seismic design code irrespective of ground classification. However, PGA (Peak Ground Accelerations) of ground response analysis did not coincide with PGA calculated using amplification factor suggested by seismic design code.

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.

Method of the Calibration of earthquake Ground Motions for Seismic Design (내진설계를 위한 지진 입력하중 조정 방법)

  • 공도환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.20-27
    • /
    • 1998
  • In the current seismic design codes design earthquake is usually defined as the earthquake with the 90 percent probability of not being exceeded in the life time of a structure which is assumed as 50 years equivalent to the earthquake with 475 year recurrence period. However the life time of tall building structures may be much longer than 50 yers. The current seismic design code requires the modal analysis or dynamic time history analysis for the buildings with the height exceeding a certain height limit. The objective of this study is to collect the earthquake ground motion(EQGM) which can be used for dynamic time history analysis for tall buildings. For this purpose linear elastic design response spectrum (LEDRS) in the code is scaled to account for the recurrence period of the design earthquake. The earthquake ground motions which has been recorded are calibrated to fit the scaled LEDRS. The set of calibrated EQGM can be treated as design EQGM for the design of tall building with longer lifetime than ordinary building.

  • PDF

Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test (수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Generation of Artificial Time History Earthquake Record Family using the Least Squares Fitting Method (최소오차 최적합화 방법에 의한 인공 시간이력 지진기록군의 생성)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.31-38
    • /
    • 2008
  • Recently the necessity of time history analyses is increasing for the seismic analyses of a structure, and the seismic design provisions of IBC2003, ASCE and KBC2005 require the use of a minimum of seven earthquake records for the time history analyses. Earthquake records for the time history analyses could be selected from the database of the field-measured earthquake records having similar site conditions with the designed site, or from simulated sites satisfying the design spectrum. However, in this study seven earthquake records were generated using 50 earthquake records, classified as records measured at the rock, in the database of the Pacific Earthquake Research Center (PEER). Seven earthquake records were first selected by the least squares fitting method comparing the scaling factored response spectra with the specified design spectrum, and a family of seven artificial time history earthquake records was ultimately generated by multiplying scaling factors, which were calculated by the least squares fitting method and the SRSS averaging method, to the corresponding selected earthquake records.