• 제목/요약/키워드: Design Response Spectrum

검색결과 462건 처리시간 0.022초

나이퀴스트 속도를 초과하는 제2종 부분응답 시스템의 설계 (Design of Class-II Partial-Response System above the Nyquist Rate)

  • 오용선
    • 한국정보통신학회논문지
    • /
    • 제2권1호
    • /
    • pp.27-35
    • /
    • 1998
  • 본 논문에서는, 제2종 $(1+D)^2$ 부분응답 시스템의 대역제한 여파기를 원하는 전송속도에 따라 한정함으로써 향상된 대역효율을 얻을 수 있는 새로운 모델을 제안하였다. 전송시스뎀의 스펙트럼을 나이퀴스트 속도 초과량만큼 절단하는 모델을 설정하고, 그 제반 특성을 시간영역 및 주파수영역에서 해석하여 기존의 시스템과 비교하였다. 제안된 시스템은 나이퀴스트 속도 이상에서 동작할 때, 그 고유의 속도융통성으로 보상하는 기존의 시스템에 비하여 우수한 성능을 나타낸다. 특히, 이러한 특성은 이전에 해석되었던 제1종 및 제4종 부분응답 시스템에 비하여 매우 효과적이어서, 속도융통성으로 약 26.6%까지 보상할 수 있었던 기존의 초과량을 약 40% 이상으로 향상시킬 수 있음을 확인하였다. 이는, 제2종 부분응답 시스템의 전달함수로 주어지는 상승여현 스펙트럼이, 동일한 양의 스펙트럼 절단에 대하여 그 주파수 성분이나 에너지의 손실을 효과적으로 상쇄한다는 사실에 근거를 둔다. 이를 입증하기 위하여, 설정된 모델의 사이드로브 상쇄효과를 보여주는 시간영역 해석과 그 실측패턴을 제시하고, 대역효율의 증가에 따르는 눈 모양의 변화와 전송신호의 스펙트럼 특성을 실험적으로 확인하였다.

  • PDF

Application of Buckling Restrained Braces in a 50-Storey Building

  • Sy, Jose A.;Anwar, Naveed;Aung, Thaung Htut;Rayamajhi, Deepak
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.81-87
    • /
    • 2014
  • The use of Buckling Restrained Braces (BRB) for enhancing the performance of the buildings is gaining wider acceptance. This paper presents the first application of these devices in a major high-rise building in the Philippines. A 50-storey residential reinforced concrete building tower, with ductile core wall, with BRB system is investigated. The detailed modeling and design procedure of buckling restrained brace system is presented for the optimal design against the two distinct levels of earthquake ground motions; serviceable behavior for frequent earthquakes and very low probability of collapse under extremely rare earthquakes. The stiffness and strength of the buckling restrained brace system are adjusted to optimize the performance of the structural system under different levels of earthquakes. Response spectrum analysis is conducted for Design Basis Earthquake level and Service level, while nonlinear time history analysis is performed for the most credible earthquake. The case study results show the effectiveness of buckling restrained braces.

Comparison of the seismic performance of existing RC buildings designed to different codes

  • Zeris, Christos A.;Repapis, Constantinos C.
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.505-523
    • /
    • 2018
  • Static pushover analyses of typical existing reinforced concrete frames, designed according to the previous generations of design codes in Greece, have established these structures' inelastic characteristics, namely overstrength, global ductility capacity and available behaviour factor q, under planar response. These were compared with the corresponding demands at the collapse limit state target performance point. The building stock considered accounted for the typical variability, among different generations of constructed buildings in Greece, in the form, the seismic design code in effect and the material characteristics. These static pushover analyses are extended, in the present study, in the time history domain. Consequently, the static analysis predictions are compared with Incremental Dynamic Analysis results herein, using a large number of spectrum compatible recorded base excitations of recent destructive earthquakes in Greece and abroad, following, for comparison, similar conventional limiting failure criteria as before. It is shown that the buildings constructed in the 70s exhibit the least desirable behaviour, followed by the buildings constructed in the 60s. As the seismic codes evolved, there is a notable improvement for buildings of the 80s, when the seismic code introduced end member confinement and the requirement for a joint capacity criterion. Finally, buildings of the 90s, designed to modern codes exhibit an exceptionally good performance, as expected by the compliance of this code to currently enforced seismic provisions worldwide.

국내 건축물 지진피해 위험도의 지역단위 평가 (Regional Seismic Risk Assessment for Structural Damage to Buildings in Korea)

  • 안숙진;박지훈;김혜원
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.265-273
    • /
    • 2023
  • This study proposes a methodology for the regional seismic risk assessment of structural damage to buildings in Korea based on evaluating individual buildings, considering inconsistency between the administrative district border and grid lines to define seismic hazard. The accuracy of seismic hazards was enhanced by subdividing the current 2km-sized grids into ones with a smaller size. Considering the enhancement of the Korean seismic design code in 2005, existing seismic fragility functions for seismically designed buildings are revised by modifying the capacity spectrum according to the changes in seismic design load. A seismic risk index in building damage is defined using the total damaged floor area considering building size differences. The proposed seismic risk index was calculated for buildings in 29 administrative districts in 'A' city in Korea to validate the proposed assessment algorithm and risk index. In the validation procedure, sensitivity analysis was performed on the grid size, quantitative building damage measure, and seismic fragility function update.

반응 표면 분석법을 이용한 감시 정찰용 반사 굴절 광학계 부경 지지대의 형상 최적 설계 (Optimal Geometric Design of Secondary Mirror Supporter in Catadioptric Optical System for Observation Reconnaissance Using Response Surface Methodology)

  • 이상은;김대희;이태원
    • 대한기계학회논문집A
    • /
    • 제41권5호
    • /
    • pp.435-442
    • /
    • 2017
  • 반사 굴절 광학계는 굴절과 반사를 이용하여 영상을 전달한다. 영상의 질을 높이려면 광학계에 있는 부경의 편심과 경사가 작게 발생되고 주경이 광량을 최대로 받도록 부경 지지대의 형상이 결정되어야 한다. 특히 감시 정찰용 광학계는 랜덤 가속도 진동을 심하게 받는다. 이러한 환경하에 최선의 설계를 하기 위하여 표준편차로 표현된 편심과 경사에 대한 제한조건을 만족하면서 부경 지지대의 부피를 최소화하여야 한다. 편심과 경사의 표준편차는 통계적인 표현이므로 이들에 대한 설계민감도를 해석학적으로 유도하기가 어렵다. 그러므로, 이 표준편차들을 반응 표면 분석법을 이용하여 2차 회귀 방정식으로 대체한 후 형상 최적 설계를 수행하였다. 검토 결과 본 논문의 방법이 랜덤 진동을 받는 강건한 부경 지지대의 형상 최적화에 효율적임을 알 수 있다.

아치구조물의 모의지진파 입력에 따른 지진응답특성에 관한 연구 (A Study on the Seismic Response of Arch Structures Using Artificial Earthquake Ground Motions)

  • 정찬우;박성무;강주원
    • 한국공간구조학회논문집
    • /
    • 제8권6호
    • /
    • pp.59-66
    • /
    • 2008
  • 대부분의 대공간구조물은 극장, 스타디움, 체육관 등 공공성을 가지게 되어 내진안전성에 있어서 중요성이 많이 인식되고 있다. 그러나 구조형식 및 형상에 관하여 다양성을 가지고 있는 대공간구조물이 동적하중인 지진하중을 받을 때 나타나는 구조물의 거동은 파악하기 힘들다. 본 논문에서는 대공간구조의 주 구조요소인 아치구조물에 대하여 고유진동모드를 검토하였고 모의지진파를 입력하여 지진거동특성을 분석한 결과로서 아치구조물은 설계가속도스펙트럼의 크기보다 장주기 성분에 더 많은 영향을 받는다는 것을 파악하였다.

  • PDF

Loss of Coolant Accident Analysis During Shutdown Operation of YGN Units 3/4

  • Bang, Young-Seok;Kim, Kap;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.17-28
    • /
    • 1999
  • A thermal-hydraulic analysis is conducted on the loss-of-coolant-accident (LOCA) during shutdown operation of YGN Units 3/4. Based on the review of plant-specific characteristics of YGN Units 3/4 in design and operation, a set of analysis cases is determined, and predicted by the RELAP5/MOD3.2 code during LOCA in the hot-standby mode. The evaluated thermal-hydraulic phenomena are blowdown, break flow, inventory distribution, natural circulation, and core thermal response. The difference in thermal-hydraulic behavior of LOCA at shutolown condition from that of LOCA at full power is identified as depressurization rate, the delay in peak natural circulation timing and the loop seal clearing (LSC) timing. In addition, the effect of high pressure safety injection (HPSI) on plant response is also evaluated. The break spectrum analysis shows that the critical break size can be between 1% to 2% of cold leg area, and that the available operator action time for the Sl actuation and the margin in the peak clad temperature (PCT) could be reduced when considering uncertainties of the present RELAP5 calculation.

  • PDF

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.

원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답 (Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test)

  • 김동관;김호수;김진우
    • 한국지진공학회논문집
    • /
    • 제26권3호
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.