• Title/Summary/Keyword: Design Rainfall

Search Result 703, Processing Time 0.035 seconds

Analysis of Performance Characteristic for Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태 변화에 의한 소수력발전소 성능특성분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.614-618
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site such as design flowrate due to rainfall condition of recent period varied sensitively. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF

Effect of Rainfall Design Frequency Determination on the Design of Storm Sewer System (강우 확률년수의 설정이 우수관거 설계에 미치는 영향)

  • Lee, Cheol-kyu;Hyun, In-hwan;Dockko, Seok;Kim, Hyung-jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2005
  • Recently, the economic losses caused by inundation are increasing due to the urbanization and industrialization, i.e., intensive land utilization and concentration of population and properties. It is regarded that the role of the storm sewer systems in urban areas becomes more important as one of the effective countermeasures for reducing the inundation losses. In this study, the effects of rainfall design frequency enhancement on the construction cost of the storm sewer systems were analyzed by increasing the design frequency from the present design frequency of the sewer systems, which is 5~10 years, to 15 years, 20 years and 30 years. The change rate functions of the design discharge and construction cost based on the various design frequencies were derived by regression analysis. According to the analysis, change the rate of design discharge at 15, 20, 30 years rainfall design frequencies were increased by 10%, 17.1%, and 27.2%, respectively, when compared to that at 10 year frequency. Furthermore, it was found that by increasing the design frequency from 10 years to 15 years, 20 years and 30 years, the construction costs were increased by 5.0%, 8.0% and 12.4%, respectively. Finally, their reliabilities need to be tested by applying the rate functions to the real storm sewer districts.

Estimation of Design Rainfalls Considering an Increasing Trend in Rainfall Data (강우량의 증가 경향성을 고려한 목표년도 확률강우량 산정)

  • Kwon, Young-Moon;Park, Jin-Won;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.131-139
    • /
    • 2009
  • Recently frequent occurrences of heavy rainfall and increases of rainfall intensity resulted in severe flood damage in Korea. In order to mitigate the vulnerability of flood, it is necessary to estimate proper design rainfalls considering the increasing trend of extreme rainfalls for hydrologic planning and design. This study focused the estimation of design rainfalls in a design target year. Tests of trend indicated that there are 7 sites showing increasing trends among 56 sites which have hourly data more than 30 years in Korea. This study analyzed the relationship between mean of annual maximum rainfalls and parameters of the Gumbel distribution. Based on the relationship, this study estimated the probability density function and design rainfalls in a design target year, and then constructed the rainfall-frequency curve. The proposed method estimated the design rainfalls 6-20% higher than those from the stationary rainfall frequency analysis.

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정)

  • Lee, Soon-Hyuk;Park, Jong-Hwa;Ryoo, Kyong-Sik;Jee, Ho-Keun;Shin, Yong-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.237-240
    • /
    • 2002
  • Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. RRMSE, RBIAS and RR in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. RE for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

  • PDF

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF

A Determination of the Rainfall Durations of Various Recurrence Intervals (재현기간별 설계유효우량의 지속기간결정)

  • 윤용남;전병호
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.56-62
    • /
    • 1979
  • Many methods of estimating design floods from rainfall data involve a trial and error procedure to determine the duration of the design rainfall, which is very complicated and time-consuming. In this study, an effort was given to derive an analytical expression for estimating the appropriate duration for use with a particular unit hydrograph. According to the so-derived analytical expression the coordinateds of hvdrograph curve and rainfall curve for the Musim Representative Basin were computed and then plotted on a same scal graph paper on which the critical durations of design rainfall excess of various recurrence intervals were determined by the point of intersection of the tow curves.

  • PDF

Design Rainfall for Slope Stability Analysis and Its Application (사면안정해석을 위한 설계강우 산정과 적용방안)

  • Kim, Kyung-Suk;Jang, Hyun-Ick;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.957-965
    • /
    • 2008
  • Recently, slope stability analysis in current design criteria is criticized for its unrealistic assumption of groundwater table and slope stability analysis incorporating seepage analysis considering rainfall is gaining a recognition as an alternative. However, a reasonable method for determining the rainfall used in the seepage analysis has not yet been established. Rainfall input for seepage analysis is a time series of rainfall and is similar to the hyetograph which is usually obtained from hydrology. In this paper a method to obtain the hyetograph from the intensity-duration-frequency is proposed. The resulting hyetograph can be used in the in the slope design stage. Also some considerations for practical application of slope stability analysis considering the rainfall is included.

  • PDF

Prospect of Design Rainfall in Urban Area Considering Climate Change (기후변화 영향을 고려한 도시지역의 확률강우량 전망)

  • Son, Ah Long;Bae, Sung Hwan;Han, Kun Yeun;Cho, Wan Hee
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.683-696
    • /
    • 2013
  • Recent inundation damage has frequently occurred due to heavy rainfall in urban area, because rainfall has locally occurred exceeding the capability of a flood control plan by the exiting design rainfall from the data of Seoul weather station. Accordingly the objective of this study is to predict new design rainfall in order to make a future flood control plan considering climate change. In this study, for considering spatial characteristics of rainfall in urban area, data of AWS was used and for retaining insufficient rainfall data, WGR model was estimated the application of target area. The results were compared with the observation data and consequently show reasonable results. In addition, to prepare for climate change, design rainfall was calculated by applying for various climate scenarios and the result would be used in order to establish future flood control plan.

Distribution of average intervent times between adjacent rainfall events for overflow risk-based design of storm-water infiltration basin (월류위험도 기반 침투형저류지 설계를 위한 평균무강우지속시간도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.195-203
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea. The continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average intervent times between adjacent rainfall events were created to facilitate the application to the overflow risk-based design of storm-water infiltration basin. This study shows that the one-parameter exponential distribution is suitable for the frequency distribution of the average intervent times for the domestic rainfall data. Distribution charts of the average intervent times were created for 4 hour and 6 hour of storm separation time, respectively. The inland Gyeongsangbuk-do and Western coastal area had relatively longer average intervent times, whereas Southern coastal area and Jeju-do had relatively shorter average intervent times.

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF