• Title/Summary/Keyword: Design Morphology

Search Result 288, Processing Time 0.028 seconds

Preparation and evaluation of GFP-containing microspheres for oral vaccine delivery system (경구용 백신수송체용 GFP 함유 마이크로스피어의 제조 및 평가)

  • Jiang, Ge;Park, Jong-Pil;Kwak, Son-Hyok;Hwang, Sung-Joo;Maeng, Pil-Jae
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.253-258
    • /
    • 2000
  • In order to design the oral vaccine delivery system, we prepared the alginate micro spheres containing GFP (green fluorescent protein) as a model drug by spray method. To optimize the preparation conditions of microspheres, we investigated the effects of various parameters including nozzle pressure, nozzle opening angle, and concentrations of sodium alginate and calcium chloride. The prepared microspheres were evaluated by measuring their sizes, loading efficiency, and morphology. The particle size of microspheres was affected by the concentration of sodium alginate and calcium chloride, nozzle pressure, and nozzle opening angle. As the concentration of sodium alginate increased, GFP loading efficiency and particles size of microsphere also increased. However, it was observed to be difficult to spray the sodium alginate solution with concentration greater than 1.5% (w/v), due to high viscosity. The pressure over $3\;kgf/cm^2$ didn't affect the size of particles. As a result, the spraying method enabled us to prepare microspheres for oral vaccine delivery system. In this study, microspheres prepared with 1% (w/v) sodium alginate had greater loading efficiency and better spherical shape.

  • PDF

A Study on the Design and Fabrication of ZnO Based UV Photodetector with p-type Inversion Layer (p형 반전층을 갖는 ZnO계 자외선 수광소자의 설계 및 제작에 관한 연구)

  • Oh, Sang-Hyun;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.370-371
    • /
    • 2007
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers and UV photodetector with p-type inversion layer, the ZnO thin films were deposited by. RF sputtering system. Substrate temperature and work pressure is $100^{\circ}C$ and 15 mTorr, respectively, and the purity of ZnO target is 5N. The ZnO thin films were deposited at $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$. For sample deposited at $300^{\circ}C$, we observed full width at half maximum (FWHM) of 0.240 and good surface morphology.

  • PDF

Cell Adhesion and Growth on Nanostructured Surface

  • Yoon, Seo Young;Park, Yi-Seul;Choi, Sung-Eun;Jung, Da Hee;Lee, Jin Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.93-93
    • /
    • 2013
  • To make the rationale design of interface between cell and artificial surface, many studies have been controlled influencing cue which can typically be divided into two central categories: chemical cues based on modification surface chemical properties containing attractive/repulsive molecules, and physical cues that may include applied tension/stress, electrical polarization, magnetic field, and topography. Recently, researches have been focused on physical cue, especially topography. The surface topography may influence cellular responses for example, cell adhesion, cell morphology and gene expression. However, there were few systematic studies about these nanotopographical effects on neuronal developments in a feature size-dependent manner. Herein, we report a nanoscale-resolved study of nanotopographical effects on cellular adhesion and growth. In this study, we use substrates with packed glass beads by rubbing method for generating highly periodic nanotopographies with various sizes. We found that acceleration of neuritogenesis appeared only on the beads larger than 200 nm in diameter, and observed that filopodial thickness was comparable with this scale. This study is expected to be essential to elucidate the nanotopographical effect on cellular adhesion and growth.

  • PDF

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

The New Design of Dye-Sensitized Solar Cell Adopted by Sputter Deposition of Counter Electrode (상대전극을 스퍼터링 증착한 염료 감응형 태양전지의 새로운 디자인)

  • Kim, Hee-Je;Song, Keun-Ju;Jeon, Jin-An;Lee, Dong-Yun;Kim, Whi-Young;Choi, Jin-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.154-157
    • /
    • 2006
  • The counter electrode widely used in DSCs (Dye-sensitized Solar Cells) is constructed of conducting glass substrates coated with Pt films, where the platium acts as a catalyst. Pt counter electrodes in DSCs are one important component. It is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt counter electrode surface of DSC is deposited by reactive RF magnetron sputtering under the conditions of Ar 5mtorr, RF power of 120w and substrate temperature of $100^{\circ}C$. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. And this paper shows our recent results and technology to fabricate the new designed cell with Pt electrodes deposited by sputtering method. We have achieved fill factor 65% and photoelectric conversion efficiency around 2.6% as the best results of new designed DSCs structure.

  • PDF

The Study of Shot Peening Process Optimization for Reliability Improvement of an Aircraft Structural Part (항공용 구조물의 신뢰성 향상을 위한 숏피닝 공정 최적화 연구)

  • Nam, Yong-Seog;Jeong, Yoo-In;Kim, Hwa-Soo
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • Purpose: There is active research that improves both reliability and fatigue life of structures which widely used in the aerospace fields of defense industry. The effects of three parameters (pressure, peening time, nozzle distance) on Almen intensity and coverage will be investigated by using the experimental and analyzed data. Methods: we employed a Box-Behnken design. Additionally, to verify the validity of the optimal condition obtained from experimental results, metallurgical analyses of the shot-peened aerospace part were conducted with respect to surface morphology, residual stress. Results: Optimal shot peening condition is determined as (distance, pressure, time) by optimizing simultaneously the two responses of intensity and coverage. At the optimal peening condition the prediction interval for Almen intensity is well within the required range. And, the validity of the condition was checked by using the real aerospace aluminum alloy plate. Conclusion: Shot peening introduces significant levels of compressive residual stress and induces improves both reliability and fatigue life of structures.

Removal of sulphate from landfill leachate by crystallization

  • Aygun, Ahmet;Dogan, Selim;Argun, Mehmet Emin;Ates, Havva
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The present study explores the applicability of response surface methodology (RSM) in conjunction with central composite design (CCD) matrix to statistically optimize ettringite crystallization process for the removal of sulphate from landfill leachate. A three factor-five coded level CCD with 20 runs, was performed to estimate the best fitted model. The RSM results indicated that the fitted quadratic regression model could be appropriate to predict sulfate removal efficiency. The pH was identified as the most dominant parameter affecting sulphate removal. 61.6% of maximum sulphate removal efficiency was obtained at pH of 11.06 for a 1.87 of $Ca/SO_4$ and 0.51 of $Al/SO_4$ molar ratios. The operating cost for ettringite crystallization at optimized conditions was calculated to be 0.52 $/$m^3$. The significance of independent variables and their interactions were tested by analysis of variance. Scanning electron microscope (SEM) and SEM coupled with energy dispersive X-Ray spectroscopy results confirmed the formation of ettringite crystal and were used to describe its morphology features.

Deep Learning System based on Morphological Neural Network (몰포러지 신경망 기반 딥러닝 시스템)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.92-98
    • /
    • 2019
  • In this paper, we propose a deep learning system based on morphological neural network(MNN). The deep learning layers are morphological operation layer, pooling layer, ReLU layer, and the fully connected layer. The operations used in morphological layer are erosion, dilation, and edge detection, etc. Unlike CNN, the number of hidden layers and kernels applied to each layer is limited in MNN. Because of the reduction of processing time and utility of VLSI chip design, it is possible to apply MNN to various mobile embedded systems. MNN performs the edge and shape detection operations with a limited number of kernels. Through experiments using database images, it is confirmed that MNN can be used as a deep learning system and its performance.

Effects of Provenances, Storage Temperature and Duration on Seed Germination of Bombax costatum Pellegr & Vuillet

  • Omoyemi, Ojo Morenike;Olatunji, Asinwa Israel
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.235-242
    • /
    • 2021
  • Seed morphology, physiology and environmental conditions have influence on germination of any tropical seeds and their appropriate handling, processing and handling enhances seeds emergent. This study therefore investigated effects of storage durations under different temperatures on germination of Bombax costatum seeds from different provenances. Fresh 25 seeds of B. costatum in four replicates were collected from four different provenances (Aponmu, Oluwa, Ibadan and Oyo). They were surface sterilized, thoroughly washed in distilled water and stored at four different temperature regimes: 28℃, 21℃, 5℃ and -17℃. Samples were taken every 2 months for germination test for 18 months. Germination assessment was carried out daily and recorded. The experimental design was 4×4×10 factorial in 4 replicates. Data were subjected to percentages and analysis of variance (ANOVA). Results showed that there were significant differences among storage temperatures, storage durations and provenances on germination percentage. Freshly collected seeds from Aponmu and Oyo had the highest mean germination of 100% followed by seeds from Ibadan (89.3%). Seeds from Oyo provenance stored 5℃ had germination of 94.0%, 88.70% and 78.7% at 2nd, 4th and 6th month respectively. Seeds from Ibadan and Oyo stored at 28℃, 21℃ recorded 0.0% starting from 8 months of storage. Germination of B. costatum seeds from the four provenances decreased with increase in storage duration at different temperatures.

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning

  • Nam, Yun-Chae;Lee, Seon-Jin;Kim, Hae-In;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.