• Title/Summary/Keyword: Design Model

Search Result 27,773, Processing Time 0.066 seconds

Extraction Characteristics of Flavonoids from Lonicera flos by Supercritical Fluid Carbon Dioxide ($SF-CO_2$) with Co-solvent (초임계유체 $CO_2$ 및 Co-solvent 첨가에 따른 금은화(Lonicera fles)의 Flavonoid류 추출특성)

  • Suh, Sang-Chul;Cho, Sung-Gill;Hong, Joo-Heon;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • Effects of co-solvent polarity, citric acid, pressure, temperature, run time, and co-solvent ratio on extraction of major flavonoids from Lonicera Flos were investigated using supercritical fluid $CO_{2}(SF-CO_{2})$. HPLC analysis revealed addition of pure methanol resulted in low extraction yield of major flavonoids, luteoloin (Lu), Quercetin (Qu), Apigenin (Ap). Under same condition, as co-solvent polarity increased, yields of major flavonoids increased gradually, At optimum co-solvent extraction condirion of 60% aqueous methanol (10%, v/v), yields of Lu, Qu, and Ap were 42.09, 28.18, and 3.49 mg/100 g, respectively. Addition of citric acid to 60% aqueous methanol gave higher, with addition of 1% citrie acid resulting in highest yields of 63.2 (Lu), 39.35 (Qu), and 5.79 (Ap) mg/100 g. Optimum extraction conditions of major flavonoids were 200 bar, $50^{\circ}C$, 60 min, and $CO_{2}$-methanol-water(20: 1.8: 1.2).

A Study on Block Patterns for of Korean fashion Models (졸업작품 패션쇼 모델의 치수에 적합한 원형 연구)

  • Park, Sang-Hee;Kang, Kyoung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.999-1011
    • /
    • 2008
  • To most of the students studying fashion related major, the graduation fashion show is a big challenge. They have to put together all they learn and show what they can do to their future employers. They design, pattern work, and make up garments for the show all by themselves. Unfortunately. while they make up their garments, they usually don't Dow exactly body measurements of the models. So quite often they have to alter their art works up to the last minute of the fashion show opening. Sometimes such unadequate work process ruins their work. The purpose of this study is to suggest block patterns of Korean fashion models measurements for basic items, such as jacket and pants for male models and torso length block pattern, skirt and pants for female models. 20 male and 20 female professional models were measured. The block patterns were based on their measurements. After the first fitting test, patterns were corrected by their body characteristic. For both male and female models, it was found desirable to fix the shoulder width and make an adjustment to the patterns with a deviation of width and girth items. In case of the resultant patterns the satisfaction was made better. Model sizes proposed in this study are considered closer to the size of average models, since they were based on A-grade models who are currently working in Korea. The resultant patterns can be produced by simply making a slight adjustment to the width of the proposed pattern in this study.

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Study on Korean SMEs' Brand Luxuriousness Building (마케팅 믹스를 활용한 한국 중소기업의 브랜드 명품성 구축에 대한 연구)

  • Koh, InKo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.6
    • /
    • pp.1-14
    • /
    • 2018
  • As interest and consumption of luxury goods have become more popular, luxury goods market is growing rapidly. Consumers can acquire psychological satisfaction with material abundance by purchasing and using luxury goods. Also, from the view of corporations, luxury goods have price inelastic characteristics, so they can enjoy price premium and it is good to produce good performance. That is the reason why they should pay much attention to securing luxuriousness. This study examined the establishment of brands luxuriousness in Korean SMEs. First, it examined the world market of luxury goods industry and the present condition of Korean market. Then it identified the constituents of luxuriousness by examining the prior studies and related literatures, and designed a research model based on the theoretical grounds to suggest the methods of brand luxuriousness building of Korean SMEs. Luxuriousness can be defined as the attribute of product that distinguishes luxury goods from other products by consumers' perceptions, and the factor that provides situational benefits that motivate consumers' purchasing behavior. In this study, I identified the sub-dimensions of luxuriousness according to whether there are product related attributes and consumers' benefit in consideration of the problems of existing studies. Product related luxuriousness are classified into superiority(functional benefit) and scarcity(experiential benefit), while non-product related luxuriousness are classified into differentiation(symbolic benefit) and traditionality(exclusive benefit). The following are the ways to build brand luxuriousness. First, company can use product factors. High quality, excellent design, high recognized brand with strong, favorable and unique images can enhance the luxuriousness of brand. Second, company can use price factors. Consumers tend to perceive luxury goods as high-priced items, so lowering the price of product can undermine the luxuriousness of product. Third, company can use distribution factors. It is effective for making consumers to perceive the differentiation and scarcity of luxuriousness through limited distribution channel. In addition, store atmosphere suitable for luxury brands should be created. Fourth, company can use promotion factors. The more consumers are exposed to advertisements, the more positive attitudes toward luxury brands are made, and consumers recognize luxuriousness higher. Price promotion negatively affects consumers' perception of luxuriousness. Fifth, company can use corporate factors. Consumer evaluations of products are influenced not only by the product attributes but also by the corporate association and corporate image surrounding the product. Considering the existing researches, it is possible to enhance the brand luxuriousness through high corporate competence and good corporate reputation. In order to increase the competence of the enterprise, it is useful to approach multidimensionally in relation with the knowledge creation capability. In corporate reputation, the external stakeholders' reputation is important, but the internal members' reputation is also important. Korean SMEs will be able to build brand luxuriousness by establishing marketing strategies as above and/or mix(integrate) them according to the situation.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (II): e-ASM Calibration, Effluent Prediction, Process selection, and Design (첨단 전자산업 폐수처리시설의 Water Digital Twin(II): e-ASM 모델 보정, 수질 예측, 공정 선택과 설계)

  • Heo, SungKu;Jeong, Chanhyeok;Lee, Nahui;Shim, Yerim;Woo, TaeYong;Kim, JeongIn;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 2022
  • In this study, an electronics industrial wastewater activated sludge model (e-ASM) to be used as a Water Digital Twin was calibrated based on real high-tech electronics industrial wastewater treatment measurements from lab-scale and pilot-scale reactors, and examined for its treatment performance, effluent quality prediction, and optimal process selection. For specialized modeling of a high-tech electronics industrial wastewater treatment system, the kinetic parameters of the e-ASM were identified by a sensitivity analysis and calibrated by the multiple response surface method (MRS). The calibrated e-ASM showed a high compatibility of more than 90% with the experimental data from the lab-scale and pilot-scale processes. Four electronics industrial wastewater treatment processes-MLE, A2/O, 4-stage MLE-MBR, and Bardenpo-MBR-were implemented with the proposed Water Digital Twin to compare their removal efficiencies according to various electronics industrial wastewater characteristics. Bardenpo-MBR stably removed more than 90% of the chemical oxygen demand (COD) and showed the highest nitrogen removal efficiency. Furthermore, a high concentration of 1,800 mg L-1 T MAH influent could be 98% removed when the HRT of the Bardenpho-MBR process was more than 3 days. Hence, it is expected that the e-ASM in this study can be used as a Water Digital Twin platform with high compatibility in a variety of situations, including plant optimization, Water AI, and the selection of best available technology (BAT) for a sustainable high-tech electronics industry.

Awareness of Pre-Service Elementary Teachers' on Science Teaching-Learning Lesson Plan (초등예비교사의 과학과 교수·학습 과정안 작성에 대한 인식)

  • Yong-Seob, Lee;Sun-Sik, Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.3
    • /
    • pp.335-344
    • /
    • 2022
  • This study was conducted for 4 weeks on the preparation of the science teaching/learning course plan for 109 students in 4 classes of the 2nd year intensive course at B University of Education. Pre-service elementary teachers attended a two-week field training practice after listening to a lecture on how to write a science teaching and learning course plan. Pre-service elementary teachers tried to find out about the selection of materials and the degree of connection between the course plan and the class to prepare the science teaching/learning course plan. The researcher completed the questionnaire by reviewing and deliberation on the questionnaire questions together with 4 pre-service elementary teachers. The questionnaire related to the writing of the science teaching and learning course plan consists of 8 questions. Preferred reference materials when writing the course plan, the level of interest in learning, the success or failure of the science course plan and class, the science preferred model, the evaluation method in unit time, and the science teaching and learning One's own efforts to write the course plan, the contents of this course are the science faculty. It is composed of the preparation of the learning process plan and how helpful it is to the class. The results of this study are as follows. First, it was found that elementary school pre-service elementary teachers preferred teacher guidance the most when drafting science teaching and learning curriculum plans. Second, it is recognized that the development stage is very important in the teaching and learning stage of the science department. Third, Pre-service elementary teachers believe that the science and teaching and learning process plan has a high correlation with the success of the class. Fourth, it was said that the student's level, the teacher's ability, and the appropriate lesson plan had the most influence on the class. Fifth, it was found that pre-service elementary teachers prefer the inquiry learning class model. Sixth, it was found that reports and activity papers were preferred for evaluation in 40-minute classes. Seventh, it was stated that the teaching and learning process plan is highly related to the class, so it will be studied and studied diligently. Eighth, the method of writing a science teaching and learning course plan based on the instructional design principle is interpreted as very beneficial.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

THE EFFECTS OF THERMAL STIMULI TO THE FILLED TOOTH STRUCTURE (온도자극이 충전된 치질에 미치는 영향)

  • Baik, Byeong-Ju;Roh, Yong-Kwan;Lee, Young-Su;Yang, Jeong-Suk;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.339-349
    • /
    • 1999
  • The dental structure substituted by restorative materials may produce discomfort resulting from hot or cold stimuli. To investigate the effects of this stimuli on the human teeth, thermal analysis was carried out by calculation of general heat conduction equation in a modeled tooth using numerical method. The method has been applied to axisymmetric and two-dimensional model, analyzing the effects of constant temperature $4^{\circ}C\;and\;60^{\circ}C$. That thermal shock was provided for 2 seconds and 4 seconds, respectively and recovered to normal condition of $20^{\circ}C$ until 10 seconds. The thermal behavior of tooth covered with a crown of gold or stainless steel was compared with that of tooth without crown. At the same time, the effects of restorative materials(amalgam, gold and zinc oxide-eugenol(ZOE)) on the temperature of PDJ(pulpo-dentinal junction) has been studied. The geometry used for thermal analysis so far has been limited to two-dimensional as well as axisymmetric tooth models. But the general restorative tooth forms a cross shaped cavity which is no longer two-dimensional and axisymmetric. Therefore, in this study, the three-dimensional model was developed to investigate the effect of shape and size of cavity. This three-dimensional model might be used for further research to investigate the effects of restorative materials and cavity design on the thermal behavior of the real shaped tooth. The results were as follows; 1. When cold temperature of $4^{\circ}C$ was applied to the surface of the restored teeth with amalgam for 2 seconds and recovered to ambient temperature of $20^{\circ}C$, the PDJ temperature decreased rapidly to $29^{\circ}C$ until 3 seconds and reached to $25^{\circ}C$ after 9 seconds. This temperature decreased rather slowly with stainless steel crown, but kept similar temperature within $1^{\circ}C$ differences. Using the gold as a restorative material, the PDJ temperature decreased very fast due to the high thermal conductivity and reached near to $25^{\circ}C$ but the temperature after 9 seconds was similar to that in the teeth without crown. The effects of coldness could be attenuated with the ZOE situated under the cavity. The low thermal conductivity caused a delay in temperature decrease and keeps $4^{\circ}C$ higher than the temperature of other conditions after 9 seconds. 2. The elapse time of cold stimuli was increased also until 4 seconds and recovered to $20^{\circ}C$ after 4 seconds to 9 seconds. The temperature after 9 seconds was about $2-3^{\circ}C$ lower than the temperature of 2 seconds stimuli, but in case of gold restoration, the high thermal conductivity of gold caused the minimum temperature of $21^{\circ}C$ after 5 seconds and got warm to $23^{\circ}C$ after 9 seconds. 3. The effects of hot stimuli was also investigated with the temperature of $60^{\circ}C$. For 2 seconds stimuli, the temperature increased to $40^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 3 seconds of stimuli and decreased to $30^{\circ}C$ after 9 seconds in the teeth without crown. This temperature was sensitive to surface temperature in the teeth with gold restoration. It increased rapidly to $41^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 2 seconds and decreased to $28^{\circ}C$ after 9 seconds, which showed $13^{\circ}C$ temperature variations for 9 seconds upon the surface temperature. This temperature variations were only in the range of $5^{\circ}C$ by using ZOE in the bottom of cavity and showed maximum temperature of $37^{\circ}C$ after 3 seconds of stimuli.

  • PDF