• Title/Summary/Keyword: Design Leadership

Search Result 372, Processing Time 0.019 seconds

Macro-environmental Drivers and Technological Evolution of Complex Product System: Evidence from Nuclear Power Plant (거시환경요인과 복합제품시스템의 기술진화: 원자력 발전 플랜트의 사례를 중심으로)

  • Kwak, Kiho;Kim, Wonjoon;Kim, Minki;Cho, Chang Yeon
    • Journal of Technology Innovation
    • /
    • v.25 no.2
    • /
    • pp.89-125
    • /
    • 2017
  • Complex product systems (CoPs) is a engineering-intensive products with high-ended design technology, which are closely linked with national economic growth and development of social infrastructures. Accordingly, in order to understand the technological evolution of CoPs, it is necessary to identify the macro-environmental drivers surrounding the CoPs and their impact on the technological evolution of the CoPS. Therefore, we investigate the effect of policy, economic and social drivers on the technological evolution of CoPS by implementing the longitudinal case study on nuclear power plant during the periods between 1950 and 2010s. Based on the analysis of various sources of secondary data and primary data through interviews, we found that the technological evolution of nuclear power plant is progressed as "Phase 1: Application research for peaceful utilization of nuclear energy" between 1950s and 1960s, "Phase 2: The first renaissance of nuclear energy" during 1970s, "Phase 3: Enhancement of safety and the catch-up of latecomers in nuclear energy" between 1990s and 2000s, and "Phase 4: Top prioritization of safety and the development of next generation reactors for the second renaissance of nuclear energy" since 2010s. We also found that various kinds of policy, economic and social drivers, such as energy policy, investment in technology development, economic growth and energy demand, social acceptability and environmental concern, have affected the technology evolution of nuclear power plant at each phase. We emphasize the role of macroenvironmental drivers in the technological evolution of CoPS. We also suggest that countries that endeavor to develop CoPs need to utilize those drivers for enhancing competitiveness and sustaining leadership.

The effects of out of hospital ACLS simulation training on the paramedic's duty ability (구급대원의 전문심장소생술 시뮬레이션훈련이 직무수행융합능력에 미치는 영향)

  • Park, Yoo-Na;Cho, Byung-Jun;Kim, Gyoung-Young
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.99-106
    • /
    • 2019
  • The purpose of this study is to analyze the effects of the simulation-based professional cardiac resuscitation training on the performance of professional cardiac resuscitation performed by paramedics in the pre-hospital stage and to provide basic data for effective cardiac resuscitation. This study is an experimental study of the design before and after the control of non-equality. The subjects of this study were 16 newly recruited paramedics from K firefighting school. The simulation training program and evaluation papers used as the evaluation tool were reviewed and commented by 6 ACLS simulation experts (2 emergency medical doctor, 2 emergency medical professors, 2 KALS instructors)Respectively. The training consisted of 30 minutes of theory and 150 minutes of practical training. The lecturer first demonstrated for 5 minutes, and after training by individual debriefing after individual training, individual and team education was conducted The evaluation scale was given a 5 - point Likert scale. The SPSS 22.0 program for Windows was used. The general characteristics of the subjects were analyzed for frequency, the examination of homogeneity between the experimental group and the control group wasfulfilled by t test, and the difference test between the groups of the two groups was performed using the paired t-test. The homogeneity test was able to confirm the homogeneity between experimental group and control group. In the evaluation of six ACLS techniques, it was proven that the experimental group that received the simulation training had better performance in all aspects than the non - training control group. The following are the technical items to be performed. 1. Electrocardiogram 2. Specialized instrument 3. Treatment of fluid 4. Leadership and teamwork 5. Medical guidance 6. Evaluation during transfer. It was proved that paramedics who received simulation training were improved on their job performance ability than general lecture and training group. Therefore, if simulation training and education are applied to a student in the synthetic course or an emergency resident who is engaged in clinical practice, he / she will be able to perform his / her duties more proficiently. It is expected that emergency services provided to patients with cardiac arrest will be improved.