• Title/Summary/Keyword: Design Iteration

Search Result 308, Processing Time 0.024 seconds

The Optimal Design of Steel Truss by Geometric Programming Method (기하적(幾何的) 계획법(計劃法)에 의한 강재(鋼材)트러스구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Hae Joon;Lee, Gyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.31-44
    • /
    • 1983
  • This paper applies an optimization algorithm for the elastic truss structures. The acceleration technique utilized in this study is the geometric programming method developed by the Operation Research or the applied methematics. The applicability and the efficiency of the algorithm applied in this study are tested for four different trusses. Test results show that the optimum solutions are obtained after only one or seven iterations which is very small compared with other techniques and no oscillation is needed for the convergency. Test rusults also show that the Geometric Programming Method is also effective algorithm for the convergency of the Optimum Solution in case of only being compared with the number of iteration.

  • PDF

Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects (기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5979-5986
    • /
    • 2013
  • This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

Prediction of Heave Natural Frequency for Floating Bodies (부유체의 상하동요 고유진동수 예측)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • As the motion response of heave for floating bodies on the water surface is relatively large near the natural frequency, it is necessary to predict its value accurately from the stage of initial design. Bodies accelerating in fluid experience force acted upon by the fluid, and this force is quantified by using the concept of added mass. For predicting the natural frequency of heave we need to know the added mass, which is given as a function of frequency, and hence the natural frequency can be obtained through only by iteration process, as was pointed out by Lee (2008). His method was applied to circular cylinders, and two dimensional cylinders of Lewis form by making use of the Ursell-Tasai method in the previous works, Lee and Lee (2013), Kim and Lee (2013), and Song and Lee (2015). In this work, a similar algorithm employing the concept of strip method is adopted for predicting the heave natural frequency of KCS(KRISO Container Ship), and the obtained computational result was compared with other existing experimental data, and the agreement seems reasonable. Furthermore, through the error analysis, it is shown that why the frequency corresponding to the local minimum of the added mass and the natural frequency are very close. And it seems probable that we can predict the heave natural frequency if we know only the local minimum of added mass and the corresponding frequency under a condition, which holds for ship-like bodies in general.

Design of an Optimized GPGPU for Data Reuse in DeepLearning Convolution (딥러닝 합성곱에서 데이터 재사용에 최적화된 GPGPU 설계)

  • Nam, Ki-Hun;Lee, Kwang-Yeob;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.664-671
    • /
    • 2021
  • This paper proposes a GPGPU structure that can reduce the number of operations and memory access by effectively applying a data reuse method to a convolutional neural network(CNN). Convolution is a two-dimensional operation using kernel and input data, and the operation is performed by sliding the kernel. In this case, a reuse method using an internal register is proposed instead of loading kernel from a cache memory until the convolution operation is completed. The serial operation method was applied to the convolution to increase the effect of data reuse by using the principle of GPGPU in which instructions are executed by the SIMT method. In this paper, for register-based data reuse, the kernel was fixed at 4×4 and GPGPU was designed considering the warp size and register bank to effectively support it. To verify the performance of the designed GPGPU on the CNN, we implemented it as an FPGA and then ran LeNet and measured the performance on AlexNet by comparison using TensorFlow. As a result of the measurement, 1-iteration learning speed based on AlexNet is 0.468sec and the inference speed is 0.135sec.

Form-finding Analysis of Cable Networks Considering a Flexibility of the Structures for Mesh Reflector Antennas (구조 유연도를 고려한 메쉬 반사판 안테나의 케이블 네트워크 형상 설계)

  • Roh, Jin-Ho;Choi, Hye-Yoon;Jung, Hwa-Young;Kim, Hyo-Tae;Yun, Ji-Hyeon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.68-76
    • /
    • 2022
  • The purpose of this paper was to design the cable networks for mesh reflector antennas, considering the flexibility of structures. An effective form-find methodology is proposed. The whole parts of the cable networks are described by the absolute nodal coordinate formulation. Additionally, nonlinear deformation of the cable can be obtained. The form-finding analysis of the reflector with standard configuration is performed, to validate the proposed methodology. The truss ring structure is numerically modeled using the frame elements. To consider the flexibility of the truss ring as well as the cable net structure, an iteration analysis between the truss ring and the cable net under tensional forces is also performed in the form-finding process. The finial configuration of the reflector with tensioned cable networks is demonstrated.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

A study on the Performance of Hybrid Normal Mapping Techniques for Real-time Rendering

  • ZhengRan Liu;KiHong Kim;YuanZi Sang
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.361-369
    • /
    • 2023
  • Achieving realistic visual quality while maintaining optimal real-time rendering performance is a major challenge in evolving computer graphics and interactive 3D applications. Normal mapping, as a core technology in 3D, has matured through continuous optimization and iteration. Hybrid normal mapping as a new mapping model has also made significant progress and has been applied in the 3D asset production pipeline. This study comprehensively explores the hybrid normal techniques, analyzing Linear Blending, Overlay Blending, Whiteout Blending, UDN Blending, and Reoriented Normal Mapping, and focuses on how the various hybrid normal techniques can be used to achieve rendering performance and visual fidelity. performance and visual fidelity. Under the consideration of computational efficiency, visual coherence, and adaptability in different 3D production scenes, we design comparative experiments to explore the optimal solutions of the hybrid normal techniques by analyzing and researching the code, the performance of different hybrid normal mapping in the engine, and analyzing and comparing the data. The purpose of the research and summary of the hybrid normal technology is to find out the most suitable choice for the mainstream workflow based on the objective reality. Provide an understanding of the hybrid normal mapping technique, so that practitioners can choose how to apply different hybrid normal techniques to the corresponding projects. The purpose of our research and summary of mixed normal technology is to find the most suitable choice for mainstream workflows based on objective reality. We summarized the hybrid normal mapping technology and experimentally obtained the advantages and disadvantages of different technologies, so that practitioners can choose to apply different hybrid normal mapping technologies to corresponding projects in a reasonable manner.

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF