• Title/Summary/Keyword: Design For Assembly

Search Result 1,500, Processing Time 0.04 seconds

A Method for Architecture-based Design and Implementation of Component Assembly and its Tool Support (아키텍처에 기반한 컴포넌트 조립 시스템의 설계 및 구현 방법과 지원 도구의 개발)

  • 이승연;권오천;신규상
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.812-820
    • /
    • 2003
  • Component-Based Development(CBD) leverages software reusability and diminishes development costs. Various works about component models, such as EJB, COM, and CCM are in progress to support CBD. However, current component models hardly support flexible assembly of pre-built components. To cope with this problem, architecture for component assembly must be defined in the abstract level and the gap between system architecture and its implementation should be diminished in the implementation level. This paper proposes a method for architecture-based design and implementation of component assembly. Architecture is described by the ADL, and the tool, COBALT Assembler, is introduced to support the proposed design and implementation phase of component assembly.

Design of the In-pile Plug Assembly and the Primary Shutter for the Neutron Guide System at HANARO (하나로 냉중성자 유도관 시스템을 위한 인파일 플러그 및 주개폐기의 설계)

  • Shin, Jin-Won;Cho, Young-Garp;Cho, Sang-Jin;Ryu, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1585-1589
    • /
    • 2007
  • The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the mechanical design of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  • PDF

Goldstar plastic mold components automatic design system (금형자동 설계시스템 (GPMCAD 시스템))

  • 성재기;송상호;서정원;강동진;허보석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.546-551
    • /
    • 1988
  • In design of the plastic injection mold, Almostdatas for the mold are decided During the assembly design. In this study, the designer will be able to carry out not only components design but also creation of machining data automatically, by the assembly data.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR(1)-NUCLEAR DESIGN AND FUEL CYCLE ECONOMY

  • BAE KANG-MOK;KIM MYUNG-HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.91-100
    • /
    • 2005
  • Kyung-hee Thorium Fuel (KTF), a heterogeneous thorium-based seed and blanket design concept for pressurized light water reactors, is being studied as an alternative to enhance proliferation resistance and fuel cycle economics of PWRs. The proliferation resistance characteristics of the KTF assembly design were evaluated through parametric studies using neutronic performance indices such as Bare Critical Mass (BCM), Spontaneous Neutron Source rate (SNS), Thermal Generation rate (TG), and Radio-Toxicity. Also, Fissile Economic Index (FEI), a new index for gauging fuel cycle economy, was suggested and applied to optimize the KTF design. A core loaded with optimized KTF assemblies with a seed-to-blanket ratio of 1: 1 was tested at the Korea Next Generation Reactor (KNGR), ARP-1400. Core design characteristics for cycle length, power distribution, and power peaking were evaluated by HELIOS and MASTER code systems for nine reload cycles. The core calculation results show that the KTF assembly design has nearly the same neutronic performance as those of a conventional $UO_2$ fuel assembly. However, the power peaking factor is relatively higher than that of conventional PWRs as the maximum Fq is 2.69 at the M$9^{th}$ equilibrium cycle while the design limit is 2.58. In order to assess the economic potential of a heterogeneous thorium fuel core, the front-end fuel cycle costs as well as the spent fuel disposal costs were compared with those of a reference PWR fueled with $UO_2$. In the case of comprising back-end fuel cycle cost, the fuel cycle cost of APR-1400 with a KTF assembly is 4.99 mills/KWe-yr, which is lower than that (5.23 mills/KWe-yr) of a conventional PWR. Proliferation resistance potential, BCM, SNS, and TG of a heterogeneous thorium-fueled core are much higher than those of the $UO_2$ core. The once-through fuel cycle application of heterogeneous thorium fuel assemblies demonstrated good competitiveness relative to $UO_2$ in terms of economics.

Accurate Assembly and Concurrent Design of Airframe Structures (항공기체구조의 정밀조립 및 동시설계 기술)

  • Park, Mun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.811-823
    • /
    • 2000
  • In design and manufacturing airframe structures which are composed of a lot of sub-assemblies and large complex profile shapes it is difficult to reduce so called hardware variations. Accordingly cost increasing factors for manufacturing airframe parts are much more than other machine parts because of the variability of fabricated details and assemlies. To improve cost and quality, accurate assembly methods and DPD techniques are proposed in this paper which are based upon using CAD/CAM techniques, the concept of KC's and the coordinated datum and index throughout the design, tooling, manufacturing and inspection. The proposed methods are applied to produce fuselage frame assemblies and related engineering aspects are described regarding the design of parts and tools in the context of concurrent digital definition. First articles and consequent mass production of frame assemblies shows a great improvement of the process capability ratio from 0.7 by the past processes to 1.0 by the proposed methods in addition to the cost reduction due to the less number of tools, reduced total assembly times and the space compaction needed by massive inventory. The need to achieve better Cpk, however, and future studies to be investigated will be addressed briefly.

Optimum distribution of steel frame assembly for seismic retrofit of framed structures

  • Michael Adane;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.337-345
    • /
    • 2024
  • This research proposed a particle swarm optimization (PSO) based seismic retrofit design of moment frame structures using a steel frame assembly. Two full scale specimens of the steel frame assembly with different corner details were attached to one-story RC frames for seismic retrofit, and the lateral load resisting capacities of the retrofitted frames subjected to cyclic loads were compared with those of a bare RC frame. The open source software framework Opensees was used to develop an analytical model for validating the experimental results. The developed analytical model and the optimization scheme were applied to a case study structure for economic seismic retrofit design, and its seismic performance was assessed before and after the retrofit. The results show that the developed steel frame assembly was effective in increasing seismic load resisting capability of the structure, and the PSO algorithm could be applied as convenient optimization tool for seismic retrofit design of structures.

On the Generation of Line Balanced Assembly Sequences Based on the Evaluation of Assembly Work Time Using Neural Network (신경회로망기법에 의한 조립작업시간의 추정 및 라인밸런싱을 고려한 조립순서 추론)

  • 신철균;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.339-350
    • /
    • 1994
  • This paper presents a method for automatic generation of line balanced assembly sequences based on disassemblability and proposes a method of evaluating an assembly work time using neural networks. Since a line balancing problem in flexible assembly system requires a sophisticated planning method, reasoning about line balanced assembly sequences is an important field of concern for planning assembly lay-out. For the efficient inference of line balanced assembly sequences, many works have been reported on how to evaluate an assembly work time at each work station. However, most of them have some limitations in that they use cumbersome user query or approximated assembly work time data without considering assembly conditions. To overcome such criticism, this paper proposes a new approach to mathematically verify assembly conditions based on disassemblability. Based upon the results, we present a method of evaluating assembly work time using neural networks. The proposed method provides an effective means of solving the line balancing problem and gives a design guidance of planning assembly lay-out in flexible assembly application. An example study is given to illustrate the concepts and procedure of the proposed scheme.

조립부품의 분리도및 불안정도를 이용한 Turning device의 설계에관한 연구

  • 신철균;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.257-261
    • /
    • 1993
  • This paper presents a design method of turning device for robotic assembly based on the verification of a instability for a base assembly. To derive the instability, first we inference collision free assembly directions by extracting separable directions for the part, and calculate the separability which gives informations as to how the part can be dasily separated. Using the result, we determine the instability evaluated by summing the all separabilites of each component part in base assembly. The proposed method gives a design guidance of turning device by evaluating a degree of the motion istability for the base assembly in flexible manufacturing application. An example is given to illustrate the concepts and procedure of the proposed scheme.

Thermal-fluid-structure coupling analysis on plate-type fuel assembly under irradiation. Part-II Mechanical deformation and thermal-hydraulic characteristics

  • Li, Yuanming;Ren, Quan-yao;Yuan, Pan;Su, Guanghui;Yu, Hongxing;Zheng, Meiyin;Wang, Haoyu;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1556-1568
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect stress conditions, mechanical behaviors and thermal-hydraulic performance of the fuel assembly. This paper is the Part II work of a two-part study devoted to analyzing the complex unique mechanical deformation and thermal-hydraulic characteristics for the typical plate-type fuel assembly under irradiation effect, which is on the basis of developed and verified numerical thermal-fluid-structure coupling methodology under irradiation in Part I of this work. The mechanical deformation, thermal-hydraulic performance and Mises stress have been analyzed for the typical plate-type fuel assembly consisting of support plates under non-uniform irradiation. It was interesting to observe that: the plate-type fuel assembly including the fuel plates and support plates tended to bend towards the location with maximum fission rate; the hot spots in the fuel foil appeared at the location with maximum thickness increment; the maximum Mises stress of fuel foil was located at the adjacent location with the maximum plate thickness increment et al.

Implementation and Evaluation of Automatic Assembly System from Manual Assembly Process of Small-sized Motor (소형 모터의 수 조립 공정의 자동 조립 시스템 구축 및 평가 체계)

  • Mok, Hak-Soo;Cho, Jong-Rae;Kim, Myoung-Lyoul
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.32-42
    • /
    • 1999
  • This paper proposes and implementation procedure for an automatic assembly system from a manual assembly and an evaluation method of implemented several automatic system alternatives using an AHP (Analytic Hierarchy Process) in a small-sized motor. First, the current product is redesigned for DFA (Design For Assembly) and assembly automation of motor, and then it is decided mechanisms of moving, magazining, feeding, composing of each part using main joining equipment and auxiliary equipment. Following the decided mechanism, the necessary assembly machines are selected or designed considering objectives and assembly conditions. Finally, the layout alternatives are completed for the automatic assembly system. According to the evaluation criteria which are established in advance, the automatic system alternatives are analyzed using AHP.

  • PDF