• 제목/요약/키워드: Design Fatigue Curve

검색결과 154건 처리시간 0.029초

Environmental fatigue correction factor model for domestic nuclear-grade low-alloy steel

  • Gao, Jun;Liu, Chang;Tan, Jibo;Zhang, Ziyu;Wu, Xinqiang;Han, En-Hou;Shen, Rui;Wang, Bingxi;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2600-2609
    • /
    • 2021
  • Low cycle fatigue behaviors of SA508-3 low-alloy steel were investigated in room-temperature air, high-temperature air and in light water reactor (LWR) water environments. The fatigue mean curve and design curve for the low-alloy steel are developed based on the fatigue data in room-temperature and high-temperature air. The environmental fatigue model for low-alloy steel is developed by the environmental fatigue correction factor (Fen) methodology based on the fatigue data in LWR water environments with the consideration of effects of strain rate, temperature, and dissolved oxygen concentration on the fatigue life.

304L 스테인리스 강 용접부의 저주기 피로 성능 평가 (Low Cycle Fatigue Performance of 304L Stainless Steel Weldments)

  • 황재현;오동진;이도영;전민성;김명현
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.47-51
    • /
    • 2016
  • Recently, the market of liquefied natural gas is growing in accordance with shale gas development and environmentally friendly policies. Also, LNG is in the spotlight as an alternative fuel to previously used fossil fuel and the fuel for the ship to meet emission standards which takes effected by IMO (International Maritime Organization). According to growth of LNG, LNG carriers needs are also expected to increase significantly. This study investigates low cycle fatigue (LCF) performance of 304L stainless steel weldments to investigate fatigue performance in plastic strain region. 304L stainless steel is known to have improved fatigue performance at cryogenic conditions. LCF behavior are investigated by a strain-controlled condition up to 1% strain range and conducted with three different thickness (3mm, 5mm, 10mm). Also, test were performed with three different strain ratio R such as R = -1, -0, 0.5, Finally, the fatigue design curve for 304L stainless steel weldments at room tem- perature are proposed. Considering all test conditions, it is shown that LCF performance have similar tendency regardless of thickness and strain ratio. LCF design curve of 304L stainless steel weldments are lower than 304L stainless steel base metal.

HIPS(HR-1360) 재료의 피로 특성 평가 (Fatigue Characteristic of HIPS(HR-1360) Materials)

  • 박재실;석창성;이종규;이재혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.129-134
    • /
    • 2000
  • Recently, HIPS(High Impact Polystyrene) materials are spot-lighted as office equipment, home electronics, electronics appliances housing, packing containers, etc. But its using are occur to problem caused by fatigue fracture. However, its strength is larged affected by environmental conditions. So, in this paper it tried to analyze the effect of temperature by tensile test and fatigue test. It was observed that yield strength and ultimate strength, fatigue life of same stress decreased relatively with increase temperature. Further, this paper predict S-N curve using the result of tensile test and micro vickers hardness test. For this purpose, the management in the engineering department is able to design the fatigue life of HIPS(HR-1360) materials.

  • PDF

안내궤도 차량 부품의 피로 수명 예측에 관한 연구 (A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS)

  • 이수호;박태원;윤지원;전용호;정성필;박중경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

지간장에 따른 강판형 철도교의 피로피해도 평가 (Assessment of the Degree of Fatigue Damage in Steel Plate-Girder Railway Bridges According to Span Length)

  • 정영화;김익겸;김지훈;남왕현
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.313-320
    • /
    • 1999
  • Steel railway bridge gets vibration from moving load ; additionally, this kind of moving load is going to be a sufficient reason, which causes fatigue damage to steel railway bridge. Fatigue damage and stress curve were raised by moving load depends on span length in steel railway bridge. In other words, stress curve appears index regarding every axial load in short span, but self weight lets stress curve's change decrease in proportion to increasing span length. Thereby, we have studied that how the steel railway bridge appear fatigue damage in proportion to span length of steel railway bridge. Dynamic strain was measured in 4 steel plate-girder railway bridge during the trains was passing, which is located on the line of Kyoung-chun railway. And time history response analysis has been done in order to ensure actual survey. The results of this study show the decreased of the fatigue damage in steel railway bridge according to length of span. This paper ends is bases research of fatigue design in steel railway bridges according to span length.

  • PDF

소성가공이 멤브레인 피로 수명에 미치는 영향 (The Effect of Plastic Working on the Membrane Fatigue Life)

  • 윤인수;김정규
    • 한국가스학회지
    • /
    • 제9권4호
    • /
    • pp.1-5
    • /
    • 2005
  • 소성가공으로 제작되는 575 304재료 멤브레인의 피로 특성에 대하여 조사하였다. 소성 가공량에 의한 영향을 파악하고자 5종류의 시험편에 대하여 피로 시험을 실행하였다. 피로 시험은 실온과 저온에서 수행하였으며, 모든 시험 결과는 지하식 저조 지침에서 제시하는 피로 시험 데이터와 비교 분석하였다. 이러한 결과를 기본으로 프레스 가공 제작 KOGAS 멤브레인 피로 수명 평가에 RPIS 설계 피로 곡선을 적용할 수 있음을 확인하였다.

  • PDF

TBM 커터헤드의 구조안정성 검토를 위한 피로해석 (Fatigue analysis for structural stability review of TBM cutterhead)

  • 최순욱;강태호;이철호;장수호
    • 한국터널지하공간학회 논문집
    • /
    • 제22권5호
    • /
    • pp.529-541
    • /
    • 2020
  • 기계화터널시공의 대표적인 장비인 TBM의 커터헤드는 타 장비에 비해 굴착 중 발생하는 하중이 매우 크며, 마모가 발생하여 단면이 손실되는 작업환경을 가지고 있어 피로파괴에 의한 설계검토가 필요하지만, TBM커터헤드에 대한 피로해석을 수행한 사례는 찾기 어렵다. 본 연구에서는 직경 8.2 m인 커터헤드를 대상으로 안전수명설계 개념으로 S-N커브를 이용하여 응력-수명 설계 검토를 수행하였다. 또한 건설장비의 피로설계방법과 피로손상도를 평가하는 방법에 대해 소개하고 직경 8.2 m의 TBM 커터헤드를 대상으로 피로해석을 수행한 결과를 설명하였다. S-N curve는 피로 설계를 하는 데에 있어서 핵심적인 역할을 하는 것을 알 수 있었으며, 피로 하중을 받고 있는 구조물이 현재 시점에서 어느 정도의 피로 손상을 받고 있는지를 평가하는 데에도 사용될 수 있다. 앞으로 건설장비에서도 장비를 사용하는 동안 어떤 시점에서 피로문제가 발생하는지와 장비의 안전 점검은 언제 실시하는 것이 효과적인지 등에 대한 정보를 파악하는 안전수명설계 개념을 도입하는 것이 필요하다.

쇼트피닝에 의한 자동차용 베벨기어의 피로설계 (Fatigue Design of Bevel Gear for Automobile by Shot Peening)

  • 이동선;정성균
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.63-68
    • /
    • 2008
  • The fatigue characteristics of bevel gear used for differential gear of automobile was investigated in this paper. From the A-N(Almen intensity-Number of fracture)curve of bevel gear it was shown that there was a specific time that have a maximum fatigue life. Optimal peening condition was 65m/s of project velocity and 8min of project time. Fatigue life was also investigated from the S-N curve between optimal peened specimen and unpeened specimen. Another very significant point is that the crack initiation of bevel gear by shot peening was generated in the subsurface from fractography. This paper shows that shot peening process tremendously improve fatigue characteristics of bevel gear.

누적손상법(Miner's rule)을 이용한 철도차량 차체 용접부의 피로평가 (The fatigue analysis using cumulative damage rule (Miner's rule) for the welding areas of carbody structure)

  • 김광우;박근수;박형순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.30-34
    • /
    • 2007
  • Structural integrity of railway vehicles should last for a long period against various and continuous fatigue loadings, and the carbody structures of railway vehicle are manufactured by applying multiform welding types for each material. Since the most of cracks are occurred and proceeded at the vicinity of welding area during the lifetime of carbody structure, the fatigue strength evaluation for welding area of carbody structure should have been carried out. Rotem Company has evaluated lifetime and fatigue strength of carbody structure according to the fatigue analysis based on the international standard and/or inner-official regulation. This study introduces the fatigue analysis method that we have evaluated and calculated the damages for the welding areas of carbody structure under various fatigue loading conditions using cumulative fatigue damage rule(Miner's rule) to verify whether the cumulative damage does exceed unity. This study contains the fatigue test of specimens to derive stress-life relations(S-N curve), sub-modeling analysis and the calculation of cumulative damages under fatigue loading. The fatigue analysis verifies the welding area shall be capable of withstanding under fatigue loading, identifies how critical area shall be selected and presents the principles to be used for design verification.

  • PDF

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.