• Title/Summary/Keyword: Desert sand

Search Result 42, Processing Time 0.029 seconds

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Grain-Size Distribution of Source Areas of Asian Dust (Yellow Sand) in China

  • Yi, Hi-Il;Shin, Im-Chul
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.2
    • /
    • pp.77-79
    • /
    • 2007
  • The source regions of Asian Dusts (Yellow Sands) in the western part of China are investigated, and the soil samples are collected samples for approximately 15 days during the spring of 2005. Particle sizes of sediments are analyzed and compared with each other. These grain-size analyses from the source areas can be compared Particle sizes between loess deposits and desert sands in western part of China and desert areas show distinctive differences. Loess deposits are predominantly composed of fine sands and silts. The distinction between the final characteristics of Asian Dust particles arrived in Korea and characteristics during transportation can be recognized comparison with the Asian Dust particles collected where the dust particles settled down. The characteristics of Asian Dust particle sizes can provide the basic information regarding the transportation history from the source region.

  • PDF

Influence of HAPS and GEO Satellite under SANDU Layering and Gas Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.93-100
    • /
    • 2021
  • Satellite communication for high altitude platform stations (HAPS) and geostationary orbit (GEO) systems suffers from sand and dust (SANDU) storms in desert and arid regions. The focus of this paper is to propose common relations between HAPS and GEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three-dimensional relationship for HAPS and GEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gas effects for different frequency, and propagation angle to provide systems' operations with a predicted vision of satellite parameters' values. Thus, the proposed system provides wide range of selecting applicable parameters, under different weather conditions, in order to achieve better SNR for satellite communication.

Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside- (환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Characteristics of suspended particulate for Yellow sand of January, 1999 in Busan (1999년 1월의 황사 발생시 부산지역의 부유분진 특성)

  • 전병일;박재림;박종길
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1081-1087
    • /
    • 2002
  • This study was performed to research the characteristics of suspended particulate for Yellow Sand of January, 1999 in Busan. Yellow Sand frequency during 13 years(1988~2000) in Busan showed maximum in April(57%), next to March(21%), May(16%). According to result of 850hPa weather map and backward isentropic trajectory, this event originated from the Gobi Desert and the Loess Plateau of China. And three mode was found in time series of TSP and PM10 concentration, primary peak showed the maximum hourly concentration at ali station. Gamjeondong as industrial site showed the highest TSP concentration and also had the longest high concentration($geq700\mu\textrm{g}/m^3$). In PM10, concentration of primary peak showed maximum value at Yeonsandong, maximum concentration of secondary and third peak was Deokcheondong. Lasted time from primary peak to secondary peak was about 30 hours, between secondary peak and third peak was 18 hours in Busan, The traveling time between occurrence of Yellow Sand the finding of it was 8~9 hours in Busan and 4~5 hours in central area.

The Features Associated with the Yellow Sand Phenomenon Observed in Korea in Wintertime (겨울철 황상 현상의 특징)

  • 전영신;김지영;부경온;김남욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.487-497
    • /
    • 2000
  • Spring time is a favorable season to be easily observed the Yellow Sand phenomenon in East Asia. In particular most of the phenomenon tend to occur in April. However, Yellow Sand phenomenon was observed from almost the whole country of Korea in winter of 1966, 1977 and 1999. The features of the synoptic weather pattern in the source regions, air stream flow between the source region and Korea, the measurement of TSP concentration, aerosol size distribution, and chemical composition of snow samples associated with Yellow Sand phenomenon were investigated. The result showed the characteristic evolutionary feature of the synoptic system associated with Yellow Sand phenomena, that is, a strong low level wind mobilized the dust within 2 or 3 days before Yellow Sand phenomenon being observed in Seoul. The wind was remarkably intensified in the source region on January 24, 1999 under the strong pressure gradient, A trajectory analysis showed that the Yellow Sand particle could be reached to Korea within 2 days from the source region, Gobi desert, through Loess plateau and Loess deposition region. The TSP concentration at the top of Kwanak mountain during the Yellow Sand phenomenon is abruptly increasing than the monthly mean concentration. The size resolved number concentration of aerosols ranging from 0.3 to 25${\mu}{\textrm}{m}$ was analyzed during Yellow Sand episode. It was evident that aerosols were distinguished by particles in the range of 2-3 ${\mu}{\textrm}{m}$ to result in the abrupt increase in January 1999, After Yellow Sand phenomenon, there was heavy snow in Seoul. By the analysis of snow collected during that time, it was observed that both the Ca(sup)2+ concentration and pH were increased abnormally compared to those in the other winter season.

  • PDF

Distinction between HAPS and LEO Satellite Communications under Dust and Sand Storms Levels and other Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.382-388
    • /
    • 2022
  • Satellite communication for high altitude platform stations (HAPS) and low earth orbit (LEO) systems suffer from dust and sand (DU&SA) storms in the desert regions such as Saudi Arabia. These attenuations have a distorting effect on signal fidelity at high frequency of operations. This results signal to noise ratio (SNR) to dramatically decreasing and leads to wireless transmission error. The main focus in this paper is to propose common relations between HAPS and LEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three dimensional relationship for HAPS and LEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gaseous effects for different frequency, and propagation angle to provide system operations with a predicted vision of satellite parameters' values. Skillful decision and control system (SD&CS) is proposed to control applied parameters that lead to improve satellite network performance and to get the ultimate receiving wireless signal under bad weather condition.

The effects of growth medium and partial shade on early growth of milkweed (Calotropis procera L.) under drought stress

  • Taghvaei, Mansour;Kordestani, Mojtaba Dolat
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The use of growth medium is often recommended milkweed seedlings to grow and develop after emergence, and it is affected by growth medium and local habitat conditions. The effects of growth medium and partial shade on early growth of milkweed under drought stress (Calotropis procera L.) were studied in a field experiment. A split-split plot experimental design with three replications was carried out in the nursery. The main treatment plot was divided into two levels of shade; (no shading and partial shading). Sub treatment plot1 included growth medium at four levels (G1 = clay [suitable for milkweed growth], G2 = clay + sand, G3 = clay + perlite, G4 = clay + perlite + sand) and sub treatment plot2 included drought (irrigation intervals) at six levels (D1 = 2 [control], D2 = 4, D3 = 6, D4 = 8, D5 = 10, and D6 = 12 days per for three month). The results showed that drought stress significantly decreased emergence percentage, shoot length, shoot dry weight (SDW1), root dry weight (RDW), seedling dry weight (SDW2) and vigor index (VI). The use of growth medium increased all seedling characteristics. The G3 (clay + perlite) growth medium showed the highest performance, especially in terms of emergence percentage and seedling dry weight. Partial shade improved shoot length, shoot dry weight, and vigor index. Our results showed that the best treatment for high-vigor milkweed seedlings under drought stress was G3 (clay + perlite) growth medium and partial shade.

A Study on the Binary Appearance in Pseudo limestone Cavern (이차원의 위종유동에 관한 동굴미지형학적 연구 -천연기염물 236호로 지정된 황금굴을 중심으로-)

  • 한국동굴학회
    • Journal of the Speleological Society of Korea
    • /
    • no.66
    • /
    • pp.45-57
    • /
    • 2005
  • This Paper is a study on the duality of speleothem that appeared in 'Hyeob Jae Cave' which is designated as the natural monumen. No.236. It is located at Hyeob Jae Ri, Hanrim Eub, Bug Je-ju Gun, Je-judo. The findings are as follows. 1. The distribution range of the shelly sand which has maximum thickness of $10m{\pm}$ and average of $3m{\pm}$ was $3.2m^2$. 2. The desert hollow acted to promote the speleothem deposits in the lava tunnel with lava mound formed by lavapilz and artificial breaksand wall. 3. The main component of the pseudo limestone cavern was carbonate Calcium from shelly sand. And the deposition of speleothem in the Cave was accelerated after the volcanic erupsion of Biyang island in 1002. A.D. 4. The secondary depositions of Calcite recognized as speleothem up to now it can be used for the pseudo karst in general. 5. It seems that the variety of the cave deposits is decided depending upon the geology, land form, climate, vegetations and the structural environmental factors. 6. It seems that the wondering development of accretionary deposits caused by encrusting has a close relation with intermittent seepage of ground water. 7. Finally, we can acknowledge the coexistent duality of speleothem by shelly sand along with the joint and the lava stalactites formed at the same time with the lava tunnel on the ceiling where there was no seepage.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.