• Title/Summary/Keyword: Description of motion

Search Result 132, Processing Time 0.021 seconds

A Study on Track Record and Trajectory Control of Robot Manipulator with Eight Joints Based on Monitoring Simulator for Smart Factory

  • Kim, Hee-jin;Jang, Gi-won;Kim, Dong-ho;Han, Sung-hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_1
    • /
    • pp.549-558
    • /
    • 2020
  • We describe a new approach to real-time implementation of track record and trajectory control of robotic manipulator with eight joints based on monitoring simulator. Trajectory generator uses the kinematic equations of the arm to convert the task description into a series of set points for each of the joint control loops, while the joint controllers, with simple algorithms for just one joint can move at a fast sampling rate, guaranteeing a smooth motion. The proposed control scheme is robust, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate parameter information, nor values of manipulator parameters and payload. Reliability of the proposed technology is veriefied by monitoring simulation and experimental of robot manipulator for the smart factory with eight degrees of freedom.

Antiblurry Dejitter Image Stabilization Method of Fuzzy Video for Driving Recorders

  • Xiong, Jing-Ying;Dai, Ming;Zhao, Chun-Lei;Wang, Ruo-Qiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3086-3103
    • /
    • 2017
  • Video images captured by vehicle cameras often contain blurry or dithering frames due to inadvertent motion from bumps in the road or by insufficient illumination during the morning or evening, which greatly reduces the perception of objects expression and recognition from the records. Therefore, a real-time electronic stabilization method to correct fuzzy video from driving recorders has been proposed. In the first stage of feature detection, a coarse-to-fine inspection policy and a scale nonlinear diffusion filter are proposed to provide more accurate keypoints. Second, a new antiblurry binary descriptor and a feature point selection strategy for unintentional estimation are proposed, which brought more discriminative power. In addition, a new evaluation criterion for affine region detectors is presented based on the percentage interval of repeatability. The experiments show that the proposed method exhibits improvement in detecting blurry corner points. Moreover, it improves the performance of the algorithm and guarantees high processing speed at the same time.

The Comparative Analysis of Visual Perceptual Function and Impulse on Players Chagi in Taekwondo Events (태권도 종목별 선수들의 차기에 대한 시지각기능 및 충격량 비교 분석)

  • Lee, Young-Rim;Ha, Chul-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.205-212
    • /
    • 2010
  • The purpose of this study was to compare the efficiency of visual perception and impulse according to the three types of Taekwondo players to be able to supply an efficient training method, for this a total of 12 representative Taekwondo players of the Korean National team, 4 poomsae players, 4 kyokpa players and 4 kyorugi players weighting between 68 to 74 kg, and the results from the motion analysis system, eye tracker and Electronic hogu are as follows. For the visual perceptual function, the total body reaction time was slowest for the kyokpa group, and for the visible reaction and vision fixation time was longest of the poomsae group, while the performance movement was fastest for the kyorugi group. As for description of the two kicking motions dollyo chagi and dolgae chagi the longer visual fixation helps the accuracy of the kick. In conclusion, as there was a difference between the groups, this information could help to train the visual perception of players according to what event they are participating in.

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

Interactive System using Multiple Signal Processing (다중신호처리를 이용한 인터렉티브 시스템)

  • Kim, Sung-Ill;Yang, Hyo-Sik;Shin, Wee-Jae;Park, Nam-Chun;Oh, Se-Jin
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.282-285
    • /
    • 2005
  • This paper discusses the interactive system for smart home environments. In order to realize this, the main emphasis of the paper lies on the description of the multiple signal processing on the basis of the technologies such as fingerprint recognition, video signal processing, speech recognition and synthesis. For essential modules of the interactive system, we adopted the motion detector based on the changes of brightness in pixels as well as the fingerprint identification for adapting home environments to the inhabitants. In addition, the real-time speech recognizer based on the HM-Net(Hidden Markov Network) and the speech synthesis were incorporated into the overall system for interaction between user and system. In experimental evaluation, the results showed that the proposed system was easy to use because the system was able to give special services for specific users in smart home environments, even though the performance of the speech recognizer was not better than the simulation results owing to the noisy environments.

  • PDF

Ultimate Analysis of Prestressed Concrete Cable-Stayed Bridges (프리스트레스트 콘크리트 사장교의 극한해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.85-98
    • /
    • 1993
  • A method of analysis for the material and geometric nonlinear analysis of planar prestressed concrete cable-stayed bridges including the time-dependent effects due to load history, creep, shrinkage, aging of concrete and relaxation of prestress is described. The analysis procedure, based on the finite element method, is capable of predicting the response of these structures through elastic, cracking, inelastic and ultimate ranges. The nonlinear formulation for the description of motion is based on the updated Lagrangian approach. To account for the material nonlinearity, nonlinear stress-strain relationship and cracking of concrete, nonlinear stress-strain relationships of reinforcing steel, prestressing steel, and cable, including load reversal are given. Results from a numerical examples on ultimate analyses of cable-stayed bridges are presented to illustrate the analysis method.

  • PDF

Human Action Recognition Bases on Local Action Attributes

  • Zhang, Jing;Lin, Hong;Nie, Weizhi;Chaisorn, Lekha;Wong, Yongkang;Kankanhalli, Mohan S
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1264-1274
    • /
    • 2015
  • Human action recognition received many interest in the computer vision community. Most of the existing methods focus on either construct robust descriptor from the temporal domain, or computational method to exploit the discriminative power of the descriptor. In this paper we explore the idea of using local action attributes to form an action descriptor, where an action is no longer characterized with the motion changes in the temporal domain but the local semantic description of the action. We propose an novel framework where introduces local action attributes to represent an action for the final human action categorization. The local action attributes are defined for each body part which are independent from the global action. The resulting attribute descriptor is used to jointly model human action to achieve robust performance. In addition, we conduct some study on the impact of using body local and global low-level feature for the aforementioned attributes. Experiments on the KTH dataset and the MV-TJU dataset show that our local action attribute based descriptor improve action recognition performance.

가변 풍량 유닛에 의한 실내 공간의 온도제어를 위한 공간의 분할 모델과 상태궤환 제어기의 개발에 관한 연구

  • 박세화;신승철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.947-959
    • /
    • 2001
  • We propose a control scheme to control the indoor zone temperature via variable air volume (VAV) unit. To control the room temperature, state space model of the conditioned zone which is partitioned into nine artificial sectional regions is derived. The nonlinearity of the damper motion and actuator are considered for the practical use in the state space system description. The temperature control of the room temperature is performed by manipulating the degree of openness of the damper in relation to the local room temperature and the supplied air flow rate. In general, since a local temperature in the conditioned zone is measured, it is required to estimate the temperature values in each regions for the precise temperature control. We thus design a state observer to estimate the regional temperature, and use these values in the controller. The overall control system consists of the state observer based state feedback with the integral control. We compared the control results of the proposed scheme with those of cascade proportional and integral (PI) control, and showed that the scheme achieved precise control of the conditioned system.

  • PDF

Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend (원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.