• Title/Summary/Keyword: Desalination Technology

Search Result 204, Processing Time 0.03 seconds

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템 개발)

  • Hyun, Jun-Ho;Israr, Farrukh;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Pilot-Scale Simulation of Desalination Process Using Water Integrated Forward Osmosis System (물통합형 정삼투 시스템을 이용한 파일럿 스케일 담수 공정 모사)

  • Kim, Bongchul;Hong, Seungkwan;Choi, Juneseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.403-408
    • /
    • 2017
  • In these days, wastewater reclamation and seawater desalination play essential role in addressing the challenge of worldwide water scarcity. Particularly, reverse osmosis (RO) for seawater desalination process is commonly used due to less energy consumption than conventional thermodynamic systems. However, membrane fouling and electrical energy consumption during operation of RO system for seawater desalination haver continued to be a obstruction to its application. In this study, therefore, wastewater secondary effluent is used for osmotic dilution of seawater. Firstly, fouling behaviour of RO by simulating wastewater effluent in osmotic dilution process was measured and we calculated energy consumption of overall desalination process by theoretical equations and commercial program. Our results reveal that RO membrane fouling can be efficiently controlled by pre-treatment systems such as nano filtration (NF) or forward osmosis (FO) process. Especially FO system for osmotic dilution process is a non-pressurized membrane system and, therefore, the operating energy consumption of overall desalination system was the lowest. Moreover, fouling layer on FO membrane is comparatively weak and reversible enough to be disrupted by physical cleaning. Thus, RO system with low salinity feed water through FO process is possible as a less energy consuming desalination system with efficient membrane fouling control.

Novel Apparatus for Seawater Desalination and Its Application (신개념 해수담수 플랜트 적용을 위한 장치개발 및 적용기술)

  • Lee, Ju Dong;Kang, Kyung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.407-412
    • /
    • 2014
  • A new apparatus for seawater desalination, based on the principle of gas hydrates, is suggested. The equipment continuously produces and pelletizes gas hydrates by a squeezing operation in a dual cylinder unit, which is able to extract pure hydrate pellets from the seawater-containing reactor. Desalination efficiency for each dissolved ion from seawater samples was tested by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and ion chromatography (IC) analysis. This study demonstrates that the suggested method and the stated apparatus may solve the difficulty of separating hydrate crystals from concentrated brine solutions, and therefore may be applied to improve the efficiency of existing desalination processes.

MVRS해수담수화 및 제염기술

  • 김상현;김동국;전원표
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2001.05a
    • /
    • pp.285-302
    • /
    • 2001
  • At the present time the desalination technology of sea water for portable water in islands employs the RO method. The technology which needs complicated pretreatment processes with various chemicals can generate secondary water pollution and the high maintenance costs such as replacements of filters and membranes make islanders nearly impossible to operate. The MVRS technology for desalination of sea water however has several advantages such as constant production of quality portable water and capability of managing broad operating load. The variable-speed turbo-type vapor compressors employed in the system can utilize wind energy which is abundant in most Korean islands. Salt as a by-product can be produced by applying solar energy to the salt-concentrated waste water from the system. This paper discusses the relating topics such as technical and economical viabilities of the new MVRS desalination system for the production of portable water and salt as a by-product using new & renewable sources of energy.

  • PDF

Long-term Loads based on Evaluation of Resistance and Seakeeping Performances for a Desalination Plant Ship (해상 이동형 해수담수화 플랜트 선박의 저항 및 내항 성능 평가에 따른 장기 하중 추정)

  • Lee, Jae-bin;Paik, Kwang-Jun;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.632-640
    • /
    • 2019
  • Desalination plant ships have been recently regarded as one of the probable solutions for drought seasons in many countries. Because desalination plants should be mounted on the desalination ships and special purpose storages such as salty waste water tanks are necessary, onboard and compartment arrangements would be distinguished from those of other conventional commercial ships. This paper introduces some basic design procedure including resistance/propulsion and seakeeping performances. The ship lines were improved step by step after modification of the ship lines and verification of resistance/propulsion performances using computational fluid dynamics (CFD). After finalization of the ship lines, the seakeeping performance was also evaluated to check motion behaviors and drive wave-induced loads such as the wave shear force and bending moment. It was proved that the predicted long-term vertical wave shear force and bending moment were significantly less than the rule-based ones, thus it is expected that the deliverables of this study will reduce the construction cost of desalination plant ships.

Analysis of hydraulic system for seawater desalination plant through piping analysis program (배관 해석 프로그램을 통한 해수담수화 플랜트 수압 시스템 분석)

  • Choi, Jihyeok;Choi, Yongjun;Yang, Heungsik;Lee, Sangho;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.221-230
    • /
    • 2020
  • In actual seawater desalination plant, the pressure loss due to frictional force of pipe is about 3~5 bar. Also, the pressure loss at pipe connection about 1~3 bar. Therefore, the total pressure loss in the pipe is expected to be about 4~8 bar, which translates into 0.111 to 0.222 kWh/㎥ of energy when converted into the Specific Energy Consumption(SEC). Reducing energy consumption is the most important factor in ensuring the economics of seawater desalination processes, but pressure loss in piping is often not considered in plant design. It is difficult to prevent pressure loss due to friction inside the pipe, but pressure loss at the pipe connection can be reduced by proper pipe design. In this study, seawater desalination plant piping analysis was performed using a commercial network program. The pressure loss and SEC for each case were calculated and compared by seawater desalination plant size.

Status-of-arts of Desalination Technology (해수담수화 산업기술동향)

  • Ko, Eun-Ok;Moon, Jong-Duck;Park, Jong-Man
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.185-196
    • /
    • 2010
  • Korea is presently the leading country in global desalination industry and has been investing a large amount of money and human resources in development of new core technologies to increase its' share of global market. In this paper, we reviewed world-wide trends of the advanced water industry and outlined various seawater desalination technologies developed so far. We also made some analysis on the directions and results of the government-lead R&D sponsorship in the field of seawater-freshening technology. Present studies showed that we need an institutional strategy to help domestic companies guarantee the credibility of the technologies developed by themselves based upon their experience of plant operation. Futhermore, strategic R&D programs to develope original technologies and localization of key components for desalination plants should be preceded in the near future.

Performance Analysis of Freezing Desalination System using Seawater Heat Pump (해수 히트펌프를 이용한 냉동법 담수화시스템 개념설계)

  • Lee, Ho-Saeng;Lee, Seung-Won;Yoon, Jung-In;Kim, Hyeon-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The freeze desalination cycle with seawater heat pump system is simulated and designed for the basic data for the design of freeze desalination system. The basic model of seawater heat pump system is refrigeration cycle and indirect freeze desalination method is used for seawater desalination. The cycle performance of seawater heat pump such as COP, compressor work, condensing capacity was analyzed and the desalination performance such as fresh water productivity and energy per unit fresh water productivity was compared with respect to the seawater temperature of condenser inlet and ice ratio in the evaporator. The compressor work and condensing capacity decreased with respect to the decrease of seawater inlet temperature. The energy per unit fresh water productivity in case of $8^{\circ}C$ seawater inlet temperature showed 28.9% lower than that of $20^{\circ}C$.

A Study on the mineral control and salt manufacture technology using higher concentration in the MVR desalination plant (MVR해수담수화플랜트의 고농도 농축수를 활용한 미네랄 제어 및 제염기술 연구)

  • Kim, Yeongmin;Chun, Wongee;Kim, Dongkook
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2016
  • Seawater desalination plants generally have two inherent problems which stem from energy inefficiency and desalination concentrate management. The former has been somewhat resolved thanks to the innovative methods in utilizing new and renewable energy resources whereas the latter still has much issues to be dealt with. This paper introduces the application of a desalting process for the disposal of desalination concentrate (especially, Mg) and to improve its cost effectiveness of a MVR seawater desalination plant built in Jeju. Principal component analysis on the desalination concentrate has revealed a steady reduction of Mg with the application of the desalting process verifying its functional reliability. Also, it was found that our MVR seawater desalination plant is not only energy efficient but also could be effectively applied for the dual purpose of fresh water production and concentrate management.

Patents Review on the Seawater Desalination Plant and Technology Using Reverse Osmosis Membrane Process (SWRO 해수담수화 플랜트 기술 관련 특허 동향 분석)

  • Cho, Jin Woo;Han, Ji Hee;Lee, Seock Heon;Sohn, Jin Sik;Yang, Jeong Seok;Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.343-350
    • /
    • 2008
  • Many reports have warned of insufficient water supply in most countries in future and prospected providing safe and clean water become more difficult by lack of access to sustainable drinking water resources. Several facts and figures explained the impact by natural climate change and human activity results in the water scarcity and deterioration. Among many scientific solutions, the seawater desalination using a reverse osmosis membrane, so called SWRO (Seawater Reverse Osmosis) process, has been recognized as one of the most promising alternatives because of its stability and efficiency in producing large amount of drinking water from seawater through desalination by membrane filtration. Recently, in Korea, numerous researches are conducted to develop more productive and cost effective SWRO process for its wide implementation. The objective of this paper is to review the patents concerning SWRO technologies involving the plant engineering, maintenance including pretreatment of seawater and fouling control, module design, and mechanical units development for energy saving. The patents in Korea, U.S., Japan, Europe, and PCT were intensively researched and analyzed to provide the state of the art as well as leading edge technology on SWRO. This information can hopefully suggest meaningful guidelines on future research and development.