• Title/Summary/Keyword: Dermatopontin

Search Result 2, Processing Time 0.018 seconds

Spatio-temporal Expression and Regulation of Dermatopontin in the Early Pregnant Mouse Uterus

  • Kim, Hyun Sook;Cheon, Yong-Pil
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.262-268
    • /
    • 2006
  • During endometrial differentiation the extracellular matrix (ECM) changes dramatically to prepare for implantation of the embryo. However, the genes regulating the ECM build-up in the uterine endometrium during early pregnancy are not well known. Using the PCR-select cDNA subtraction method, dermatopontin was identified in the uterus of a pregnant mouse on day 4 of gestation. Dermatopontin mRNA increased dramatically on day 3, and was at its highest level at the time of implantation. Administration of RU 486 significantly inhibited mRNA expression by day 4 of gestation, but ICI 182,780 did not. Progesterone markedly induced dermatopontin expression in ovariectomized uteri within 4 h of administration, whereas estrogen had little effect. In silico analysis revealed progesterone receptor binding sites in the dermatopontin promoter region. Decidualization did not induce expression of dermatopontin; instead dermatopontin mRNA became strongly localized at the interimplantation site. In situ hybridization revealed that expression gradually decreased in the luminal epithelial cells as pregnancy progressed, whereas it increased in the stromal cells. The pattern of localization and the changes of intensity of dermatopontin mRNA coincided with those of collagen. Collectively, these results strongly suggest that dermatopontin expression is steroid-dependent. They also suggest that, at the time of implantation, dermatopontin expression is primarily regulated spatio-temporally by progesterone via progesterone receptors, and is modulated by the decidual response during implantation. Dermatopontin may be one of the regulators used to remodel the uterine ECM for pregnancy.

Altering of Collagens in Early Pregnant Mouse Uterus (착상전 생쥐 자궁에서 콜라겐의 변화)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Specific endometrial preparation should occur during periimplantation period. That is a progress of serial differentiation and is absolute in implantation of embryo and successful pregnancy. Remodeling of tissues shown during embryogenesis is regulated by various factors including extracellular matrix (ECM). Marked changes during pregnancy are including embryo migration, decidual response, and differentiation of placenta in placental animals including human. These changes to successful implantation in embryo and uterus have to prepare the competence for attachment of embryo and uterus, and invasion defense of uterus. During these changes, ECM dramatically changes for maintaining the uterine and embryonic functions. The major component of most connective tissue is collagens. It is very complex and hard to explore the mechanisms for ECM modulation. Recently using high throughput methodology, PCR-select cDNA subtraction method, microarray, many candidate genes have been identified. Steroid hormones have fundamental role in implantation and maintenance of pregnancy. Dermatopontin, a regulator of collagen accumulation, is regulated spatio-temporally in the uterus by primarily progesterone through progesterone receptors at the time of implantation. Modulation of extracellular matrix is critically regulated by cascade of gene net-works which are regulated by cascade of sex steroid hormones. Pathological regulation of uterine extracellular matrix reported in diabetic patients. To know the extracellular modulation is essential to understanding implantation, feto-placental development and overcome the paths involved in female reproduction. Though ECM composed with very various components and it is complex, the present review focused on the fate of collagens during periimplantation period.

  • PDF