• 제목/요약/키워드: Depthmap generation

검색결과 3건 처리시간 0.017초

다른 화각을 가진 라이다와 칼라 영상 정보의 정합 및 깊이맵 생성 (Depthmap Generation with Registration of LIDAR and Color Images with Different Field-of-View)

  • 최재훈;이덕우
    • 한국산학기술학회논문지
    • /
    • 제21권6호
    • /
    • pp.28-34
    • /
    • 2020
  • 본 논문에서는 라이다(LIDAR) 센서와 일반 카메라 (RGB 센서)가 획득한 영상들을 정합하고, 일반 카메라가 획득한 컬러 영상에 해당하는 깊이맵을 생성하는 방법을 제시한다. 본 연구에서는 Slamtec사의 RPLIDAR A3 와 일반 디지털 카메라를 활용하고, 두 종류의 센서가 획득 및 제공하는 정보의 특징 및 형태는 서로 다르다. 라이다 센서가 제공하는 정보는 라이다부터 객체 또는 주변 물체들까지의 거리이고, 디지털 카메라가 제공하는 정보는 2차원 영상의 Red, Green, Blue 값이다. 두 개의 서로 다른 종류의 센서를 활용하여 정보를 정합할 경우 객체 검출 및 추적에서 더 좋은 성능을 보일 수 있는 가능성이 있고, 자율주행 자동차, 로봇 등 시각정보처리 기술이 필요한 영역에서 활용도가 높은 것으로 기대한다. 두 종류의 센서가 제공하는 정보들을 정합하기 위해서는 각 센서가 획득한 정보를 가공하고, 정합에 적합하도록 처리하는 과정이 필요하다. 본 논문에서는 두 센서가 획득하는 정보들을 정합한 결과를 제공할 수 있는 전처리 방법을 실험 결과와 함께 제시한다.

3D Panorama Generation Using Depth-MapStitching

  • Cho, Seung-Il;Kim, Jong-Chan;Ban, Kyeong-Jin;Park, Kyoung-Wook;Kim, Chee-Yong;Kim, Eung-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제9권6호
    • /
    • pp.780-784
    • /
    • 2011
  • As the popularization and development of 3D display makes common users easy to experience a solid 3D virtual reality, the demand for virtual reality contents are increasing. In this paper, we propose 3D panorama system using vanishing point locationbased depth map generation method. 3D panorama using depthmap stitching gives an effect that makes users feel staying at real place and looking around nearby circumstances. Also, 3D panorama gives free sight point for both nearby object and remote one and provides solid 3D video.

깊이정보 생성을 위한 영상 분할에 관한 연구 (A study on image segmentation for depth map generation)

  • 임재성
    • 한국산학기술학회논문지
    • /
    • 제18권10호
    • /
    • pp.707-716
    • /
    • 2017
  • 디스플레이 기기들이 고도화 되면서, 사용자의 목적에 부합하는 영상이 요구되어져 가고 있다. 따라서, 3D 디스플레이에서 필요하게 되는 깊이 정보가 요구될 때 디스플레이 기기들은 객체 기반의 영상 정보를 제공 할 수 있어야 한다. 따라서, 본 논문에서 깊이 정보 생성을 위한 히스토그램 기반의 영상분할 알고리즘을 제안한다. 기존의 K 군집 알고리즘에서 군집의 수를 파라미터화 하여, 영상에 적응적으로 군집 수를 결정할 수 없게 되는 한계를 지닌다. 또한, k 군집 알고리즘이 지니고 있던 지역 최소점에 빠져 영상 분할에 있어 과분할을 야기하는 지역 최소점에 빠지게 되는 경향이 있다. 반면에, 제안하는 알고리즘은 분할해야할 군집 선정에서 계산량을 고려하여 적응적으로 선택 가능할 수 있게 하는 히스토그램 기반의 알고리즘을 설계하여 적응적으로 선택 가능하게 하였다. 기존 알고리즘이 가지고 있었던 지역 최소점에 빠지지 않도록 방지하게 하여 결과 영상에서 객체 기반의 결과를 보여줄 수 있도록 설계 했다. 이 후 연결요소 알고리즘을 통해 과분할 요소를 제거했다. 따라서, 제안하는 알고리즘은 객체 기반의 깊이 정보 결과를 보여 줄 뿐만 아니라, 벤치마크 방법에 비해 확률 랜드 인덱스, 분할 커버링 측면에서도 각각 벤치마크 방법에 비해 0.017, 0.051으로 향상된 결과치를 보여준다.