• Title/Summary/Keyword: Depth of boundary layer

Search Result 160, Processing Time 0.024 seconds

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

THE NORTHERN BOUNDARY THE TSUSHIMA CURRENT AND ITS FOUCTUATIONS (하계 동해에 있어서 대마난류의 북상한계와 변동)

  • Hong, Chol-Hoon;Cho, Kyu-Dae
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1983
  • The northern boundary of the Tsusgima Current and its fluctuations are divcussed in the Japan Sea in summer. This current was characterized with high slinity, and its path was traced by following the salinity maximum on the basis of oceanographical data collected during the period from 1963 to 1979. The salinity maxima (34.45-34.85 ) of the Tsushima Current in the areas between 29 N in the East China Sea and northern part of the Japan Sea were found at depths between 46m and 135m. The representative thermosteric anomaly corresponding to the salinity maximum eas examined in order to analyze the advection of this currint. In the Tsushima Current region in the Japan Sen, the thermosteric anomaly values in the layer of salinity maximum during the period of 1970 to 1979 was beween 220 cl/t and 260 cl/t. In general, as the current moves northward its salinity decreascs, its thermosteric anomaly decreases and the depth of salinity maximum becomes shallower. The northern boundary of this current, which is indicated by 34.4 isohaline on 240 cl/t isanosteric surface during the study period of ten years, was confined to south of 40 N of the Japan Sea. The 34.4 isohaline edvealed two types of flow; one of them flows northward along the eastern coast of South Korea and then meanders eastward, while the oter flows basically northeastward along the coast of Japan. The meanders of northern boundary of this currint idrntified th isohaline in this word were nearly similar to those studied by others on the bases of isotherm analysis.

  • PDF

Estimation of Boundary Shear Velocities from Tidal Current in the Gyeonggi Bay, Korea (한국 경기만에서 조류자료에 의한 경계면 전단속도 산출)

  • CHOI, JIN-HYUK
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.340-349
    • /
    • 1991
  • From tidal current measurements on a tidal sand ridge in the Gyeonggi Bay from August 24 to September 29, 1987, tidal current velocities at 1.0 m above bottom (U/SUB 100/) and boundary shear velocities (U/SUB */) are calculated. The mean speeds of tidal current for flood and ebb over the entire period are 56.3 cm/sec and 63.7 cm/sec in mid-depth (9.0 m above bottom), and 43.9 cm/sec and 43.8 cm/sec in near-bottom (1.5 m above bottom). The exponent(P) in "power law", which is generally used for extrapolation from the mid-depth current velocity to that at the top of nationally logarithmic layer, is estimated to be 0.15 in the study area. Using logarithmic velocity profile assumption, mean values of U/SUB 100/ and U/SUB */ are calculated to be 41.4 cm/sec and 2.39 cm/sec, respectively. The mean value of U/SUB */ (2.39 cm/sec) is much higher than the critical shear velicity (U/SUB *c/) of 1.40 cm/sec reported by Choi (1990). and thus, it can be suggested that the most of sands on the tidal sand ridge in the study area are easily eroded and transported for the greater part of tidal period.

  • PDF

Passive control of strength of shock wave (다공벽을 이용한 충격파 강도의 피동제어)

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Jo, Cheol-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • A shock wave, being an irreversible process, gives rise to entropy increase. A great deal of effort has been made to control shock wave and boundary layer interaction related to energy losses as well as problems of vibration and noise. In the present study, tests are performed on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of porosity, length and depth of cavity in passive control of shock wave on the attenuation of shock strength by reviewing the measured static pressures at the porous wall and cavity. Also the flow field is visualized by a Schlieren system. The results show that in the present study the porosity of 8% produced the largest reduction of pressure fluctuations and that for the same porosity, the strength of shock wave decreases with the increasings of the depth and length of cavity.

Numerical Analysis on Performance Improvement for Wind Blade by the Groove (Groove를 활용한 풍력블레이드 성능향상을 위한 수치적 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • This study, a basic study to improve aerodynamic characteristic of a wind blade, explored through CFD how much the lift to drag ratio improves according to the shape of groove formed on the surface of airfoil NACA0015. This study found out that the ratio improves by 8.7% when the ratio between boundary layer(${\delta}$) and the depth of groove(h), the ratio between the depth of groove(h) and the width of groove(d) and the ratio between the length(p) from one groove to the other and the width of groove are 1.1, 0.1 and 1.2 respectively. The number of grooves is two. It was also confirmed that the improvement of the lift to drag ratio is maintained after certain angle of attack.

Improvement of Surface Properties of Ti-6A1-4V Alloy by Low Pressure Carburizing (저압 침탄에 의한 Ti-6Al-4V 합금의 표면 특성 개선)

  • Kim, J.H.;Park, J.D.;Kim, S.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.191-196
    • /
    • 2003
  • For improvement of the wear performance of Ti alloy, vacuum-carburizing technique was tried for the first time using propane atmosphere. During the low pressure carburizing carbide was formed at the surface and carbon transfer was occurred from the carbide to the matrix. It was found that: (i) surface hardness increased with the reduction of operating pressure and time; (ii) optimum hardness distribution could be obtained with the proper choice of temperature and carbon flux control; and, (iii) case depth was largely influenced not by time but by temperature. The two steps process was recommended for obtaining thick case depth and high surface hardness of Ti alloy. For the low oxygen partial pressure, it was necessary to introduce additional CO gas to the atmosphere.Grain boundary oxidation and non-uniformity could be prevented.

Generalization of Vertical Plume Despersion in the concective Boundary Layer at Long Distances on Mesoscale (중거리에서 대류경계층 연직방향 plume 확산의 일반화)

  • 서석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • In order to genralize the vertical dispersion of plume at long distances on mesoscale over complex terrain dispersion coefficients data have been obtained systematically according to lapsed time after release by using a composite turbulence water tank that simulates convective boundary layer. Dispersion experiments have been carried out for various combined conditions of thermal turbulence intensity mechanical turbulence intensity and plume release height at slightly to moderately unstable conditions. Results of tracer dispersion experiments conducted using water tank camera and image processing system have been converted into atmospheric dispersion data through the application of similarity law. The equation $\sigma$z/Zi=aX/(b+c X2)0.5 where $\sigma$2; vertical dispersion coefficient zi : mixing height X : dimen-sionaless downwind distance was confirmed to be an appropriate and general equation for expressing $\sigma$2 variation with turbulence intensity and plume release height, The value of "a" was found to be principally affected by mechanical turbulence intensity and that of "b" by mechanical turbulence intensity and release height. It was confirmed that the magnitude of "c" varies with release height. Results of water tank experiments on the relationship of $\sigma$2 vs downwind distance x have been compared with actual atmospheric dispersion data such as CONDORS data and Bowne's nomogram Operating conditions of a composite turbulence water tank for simulating the field turbulence situations of CONDORS experiments and Bowne's $\sigma$2(x) nomogram for suburban area have also been investigated in terms of water temperature difference between convection water tank and bottom plate heating tank grid plate stroke mixing water depth length scale and velocity scale. Moreover the effect of mechanical turbulence intensity on vertical dispersion has been discussed in the light of release height and downwind distance. height and downwind distance.

  • PDF

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

Replacement of Saline Water through Injecting Fresh Water into a Confined Saline Aquifer at the Nakdong River Delta Area (염수로 충진된 낙동강 델타지역 피압대수층에서 담수주입에 의한 염수치환 연구)

  • Won, Kyung-Sik;Chung, Sang Yong;Lee, Chang-Sup;Jeong, Jae-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • We performed injection tests in a deep-seated confined aquifer to assess the potential of artificial recharge as a means of preventing saltwater contamination, thereby securing groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10-21-m-thick clay layer overlies 31.5-36.5 m of sand and a 2.8-11-m-thick layer of gravel. EC logging of five monitoring wells yielded a value of 7-44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature is 10-15.5℃, whereas between 5 and 50 m depth the temperature is 15.5-17℃. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 24 hours after injection, and again 21 days after injection. We observed a second fresh water zone in the OW-2 well, where the first injection test was performed more than 20 days before the second injection test. The contact between fresh and saline water in the injection well is represented by a sharp boundary rather than a transitional boundary. We conclude that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating (내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동)

  • Kang, Myung-Soo;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.