• Title/Summary/Keyword: Depth image enhancement

Search Result 56, Processing Time 0.023 seconds

Augmented Reality system Using Depth-map (Depth-Map을 이용한 객체 증강 시스템)

  • Ban, Kyeong-Jin;Kim, Jong-Chan;Kim, Kyoung-Ok;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.343-344
    • /
    • 2010
  • markerless system to a two-dimensional imaging is used to estimate the depth map as a stereo vision system uses expensive equipment. We estimate the depth map from monocular image enhancement and object extracted relative to the vanishing point is estimated depth map. Augmented objects in order to get better virtual immersion depending on the distance of the objects should be drawn in different sizes. In this paper, creating images obtained from the vanishing point, and in-depth information on the augmented object, augmented with different sizes and improved engagement of inter-object interaction.

  • PDF

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

3DTIP: 3D Stereoscopic Tour-Into-Picture of Korean Traditional Paintings (3DTIP: 한국 고전화의 3차원 입체 Tour-Into-Picture)

  • Jo, Cheol-Yong;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.616-624
    • /
    • 2009
  • This paper presents a 3D stereoscopic TIP (Tour Into Picture) for Korean classical paintings being composed of persons, boat, and landscape. Unlike conventional TIP methods providing 2D image or video, our proposed TIP can provide users with 3D stereoscopic contents. Navigating a picture with stereoscopic viewing can deliver more realistic and immersive perception. The method firstly makes input data being composed of foreground mask, background image, and depth map. The second step is to navigate the picture and to obtain rendered images by orthographic or perspective projection. Then, two depth enhancement schemes such as depth template and Laws depth are utilized in order to reduce a cardboard effect and thus to enhance 3D perceived depth of the foreground objects. In experiments, the proposed method was tested on 'Danopungjun' and 'Muyigido' that are famous paintings made in Chosun Dynasty. The stereoscopic animation was proved to deliver new 3D perception compared with 2D video.

Image-Enhanced Endoscopy in Lower Gastrointestinal Diseases: Present and Future

  • Lee, Han Hee;Lee, Bo-In
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.534-540
    • /
    • 2018
  • From dye-assisted conventional chromoendoscopy to novel virtual chromoendoscopy, image-enhanced endoscopy (IEE) is continuously evolving to meet clinical needs and improve the quality of colonoscopy. Dye-assisted chromoendoscopy using indigo carmine or crystal violet, although slightly old-fashioned, is still useful to emphasize the pit patterns of the colonic mucosa and predict the histological structures of relevant lesions. Equipment-based virtual chromoendoscopy has the advantage of being relatively easy to use. There are several types of virtual chromoendoscopy that vary depending on the manufacturer and operating principle. IEE plays distinctive roles with respect to histologic characterization of colorectal polyps and prediction of the invasion depth of colorectal cancers. In addition, the newest models of IEE have the potential to increase adenoma and polyp detection rates in screening colonoscopy.

Stereoscopic Effect of 3D images according to the Quality of the Depth Map and the Change in the Depth of a Subject (깊이맵의 상세도와 주피사체의 깊이 변화에 따른 3D 이미지의 입체효과)

  • Lee, Won-Jae;Choi, Yoo-Joo;Lee, Ju-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.29-42
    • /
    • 2013
  • In this paper, we analyze the effect of the depth perception, volume perception and visual discomfort according to the change of the quality of the depth image and the depth of the major object. For the analysis, a 2D image was converted to eighteen 3D images using depth images generated based on the different depth position of a major object and background, which were represented in three detail levels. The subjective test was carried out using eighteen 3D images so that the degrees of the depth perception, volume perception and visual discomfort recognized by the subjects were investigated according to the change in the depth position of the major object and the quality of depth map. The absolute depth position of a major object and the relative depth difference between background and the major object were adjusted in three levels, respectively. The details of the depth map was also represented in three levels. Experimental results showed that the quality of the depth image differently affected the depth perception, volume perception and visual discomfort according to the absolute and relative depth position of the major object. In the case of the cardboard depth image, it severely damaged the volume perception regardless of the depth position of the major object. Especially, the depth perception was also more severely deteriorated by the cardboard depth image as the major object was located inside the screen than outside the screen. Furthermore, the subjects did not felt the difference of the depth perception, volume perception and visual comport from the 3D images generated by the detail depth map and by the rough depth map. As a result, it was analyzed that the excessively detail depth map was not necessary for enhancement of the stereoscopic perception in the 2D-to-3D conversion.

  • PDF

The Enhancement of the Defects Image in Solid by Increasing Vertical-Support Base for SFR(Spatial Frequency Response) (공간주파수응답의 수직기저대역 확장에 의한 고체 내부의 결함영상 개선)

  • Kim, Hyun
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.69-80
    • /
    • 2002
  • Conventionally, we have used an acoustic microscope at single operating frequency. The resolution and quality of the measured images are determined by transducer of the microscope. In this paper, we have studied Vertical Resolution Enhancement with Acoustic Reflection Microscope using combining bases of support for SFR(Spatial Frequency Response). Increased Vertical resolution can be obtained by taking three-dimensional images at more that one frequency and numerically combining the results. As results of the experiment, we could get enhanced images with the rate of contrast in proportion to the changing rate of depth.

  • PDF

Improvement of Efficient Tone-Mapping Curve using Adaptive Depth Range Coefficient (적응적 깊이 영역 변수를 활용한 효율적인 톤 매핑 커브 개선)

  • Lee, Yong-Hwan;Kim, Youngseop;Ahn, Byoung-Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.92-97
    • /
    • 2015
  • The purpose of this work is to support a solution of optimizing TMO (tone mapping operator). JPEG XT Profile A and C utilize Erik Reinhard TMO that works well in most cases, however, detailed information of a scene is lost in some cases. Reinhard TMO only calculates its coefficient to have tone-mapping curve from log-average luminance, and this lead to lose details of bright and dark area of scenes in turn. Thus, this paper proposes an enhancement of the default TMO for JPEG XT Profile C to optimize tone-mapping curve. Main idea is that we divide tone mapping curve into several ranges, and set reasonable parameters for each range. By the experimental results, the proposed scheme shows and obtains better performance within a dark scene, compared to the default Reinhard TMO.

Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

  • De Molon, Rafael Scaf;Morais-Camillo, Juliana Aparecida Najarro Dearo;Sakakura, Celso Eduardo;Ferreira, Mauricio Goncalves;Loffredo, Leonor Castro Monteiro;Scaf, Gulnara
    • Imaging Science in Dentistry
    • /
    • v.42 no.4
    • /
    • pp.243-247
    • /
    • 2012
  • Purpose: This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Materials and Methods: Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. Results: There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm ($IC_{95%}$:6.04-6.54) and 6.79 mm ($IC_{95%}$:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64mm($IC_{95%}$:6.40-6.89) and 6.79mm($IC_{95%}$:6.45-7.11), respectively. Conclusion: The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.

Transformation of Stereoscopic Images for 3D Perception Improvement (입체영상의 3D 증강을 위한 입체영상 변환)

  • Gil, Jong In;Choi, Hwang Kyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.911-923
    • /
    • 2012
  • Recently, 3DTV and 3D displays have been released in the market. Accordingly, the production of stereoscopic images has gained much interest. Stereoscopic image being composed of left and right images are currently delivered to viewers without any modifications. The researches on the enhancement of depth perception using high-frequency components and the re-production of natural color by color compensation have been carried out for 2D images. The application of such 2D technologies to 3D stereoscopic images is an aim of this paper. This paper proposes the enhancement of 3D perception by color transformation. For this, we propose a stereo matching method for obtaining a depth map and two color transformation methods such as contrast transformation and background darkening. The effectiveness of the proposed method was verified through experiments.

Edge Enhancement for Vessel Bottom Image Considering the Color Characteristics of Underwater Images (수중영상의 색상특성을 고려한 선박하부 영상의 윤곽선 강조 기법)

  • Choi, Hyun-Jun;Yang, Won-Jae;Kim, Bu-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2017
  • Image distortion can occur when photographing deep sea targets with an optical camera. This problem arises because sunlight is not sufficiently transmitted due to seawater and various floating particles of dust. Particularly, color distortion takes place, causing green and blue color channels to be over emphasized due to water depth, while distortion of boundaries also occurs due to light refraction by seawater and floating particles of dust. These distortions degrade the overall quality of underwater images. In this paper, we analyze underwater images of the bottom of vessels. Based on the results, we propose a technique for color correction and edge enhancement. Experimental results show that the proposed method increases edge clarity by 3.39 % compared to the effective edges of the original underwater image. In addition, a quantitative evaluation and subjective image quality evaluation were concurrently performed. As a result, it was confirmed that object boundaries became clear with color correction. The color correction and contour enhancement method proposed in this paper can be applied in various fields requiring underwater imaging in the future.