• Title/Summary/Keyword: Depth filter media

Search Result 69, Processing Time 0.022 seconds

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

Experimental Evaluation of Filter Performance of Depth Filter Media Cartridge with Varying the Pleat Count and the Cartridge Assembly Arrangement

  • Hasolli, Naim;Park, Young-Ok;Rhee, Young-Woo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.133-141
    • /
    • 2012
  • A new depth filter media was designed and samples of flat sheet as well as cartridge assembly were prepared and tested to evaluate the filtration performance and compare with the commercial product. The arrangement of the depth filter media layers is important to reach the optimal filtration parameters like filter pressure drop, particle collection efficiency and dust holding capacity. Initially, both flat sheet samples of new media and commercial product have been tested using standard test units. Tests with new depth filter media cartridges of various pleat count were conducted in order to find the optimal pleat count which would represent the lowest pressure drop. These tests give an insight on how the pleat count and the assembly configuration affect the performance of the depth filter media cartridge. By comparing the samples with a commercial product we could confirm relatively high filtration performance of the sample cartridge with pleat count 150 made of new depth filter media. The cartridge with the same pleat count exhibits better performance without the outer mesh.

Soluble Manganese Removal Using Manganese Oxide Coated Media (MOCM) (산화망간피복여재를 이용한 용존망간 제거)

  • Kim, Jinkeun;Jeong, Sechae;Ko, Suhyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.813-822
    • /
    • 2006
  • Soluble manganese removal was analyzed as a function of filter media, filter depth, presence or absence of chlorination, and surface manganese oxide concentration in water treatment processes. Sand, manganese oxide coated sand (MOCS), sand+MOCS, and granular activated carbon(GAC) were used as filter media. Manganese removal, surface manganese oxide concentration, turbidity removal, and regeneration of MOCS in various filter media were investigated. Results indicated that soluble manganese removal in MOCS was rapid and efficient, and most of the removal happened at the top of the filter. When filter influent (residual chlorine 1.0mg/L) with an average manganese concentration of 0.204mg/L was fed through a filter column, the sand+MOCS and MOCS columns can remove 98.9% and 99.2% of manganese respectively on an annual basis. On the other hand, manganese removal in sand and the GAC column was minimal during the initial stage of filtration, but after 8 months of filter run they removed 99% and 35% of manganese, respectively. Sand turned into MOCS after a certain period of filtration, while GAC did not. In MOCS, the manganese adsorption rate on the filter media was inversely proportional to the filter depth, while the density of media was proportional to the filter depth.

Evaluation of the Impact of Filter Media Depth on Filtration Performance and Clogging Formation of a Stormwater Sand Filter (강우유출수 모래 필터의 여과기능 및 폐색 현상에 대한 필터 여재 깊이의 영향 평가)

  • Segismundo, Ezequiel Q.;Lee, Byung-Sik;Kim, Lee-Hyung;Koo, Bon-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.36-45
    • /
    • 2016
  • Sand filters are widely used in infiltration systems to manage polluted urban runoff. Clogging, which is mainly caused by the deposition of sediments on the filter media, reduces the filter system's infiltration capacity, which further limits its lifespan and function. The physical, chemical and biological clogging characteristics of sand filter, therefore, need to be known for effective design and maintenance. Physical clogging behavior and variations in the characteristics of sand filters according to different media depths are examined in this paper. The variations were observed from laboratory column infiltration tests conducted in a vertical flow and fluctuating head condition. It can be seen that an increase in filter media depth results in a high sediment removal performance; however, it leads to a shorter lifespan due to clogging. In the choice of filter media depth to be used in field applications, therefore, the purpose of facilities as well as maintenance costs need to be considered. At all filter media depth configurations, premature clogging occurred because sediments of 100~250 μm clogged the top 15% of filter media depth. Thus, scrapping the top 15% of filter media may be suggested as the first operational maintenance process for the infiltration system.

Study on Algae and Turbidity Removal by Floating-media and Sand Filter (부상여재 및 모래 여과장치에 의한 조류와 탁도 제거에 관한 연구)

  • Kwon, Dae-Young;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.659-668
    • /
    • 2012
  • In Korea, almost every water treatment plant suffers from seasonal problem of algae and turbidity which result from eutrophication and heavy rainfall. To relieve this problem, experimental investigation was performed to study the applicability of a floating-media and sand filter to preliminary water treatment in terms of algae and turbidity removal. Experimental results using pure-cultured algae influent showed that the shape of algae species as well as filtration velocity affects the removal efficiency. From the experiments using natural river water, it was concluded that algae removal is more sensitive to floating-media depth but turbidity more sensitive to sand depth. As the filtration velocity increased, the removal of turbidity decreased but that of algae was not affected. The floating-media and sand filter removed more than 30 % of TP, TN, turbidity, Chl-a and CODcr, and less than 20 % of DOC and $UV_{254}$.

Identification of operating parameters in auto-discharging filter system for treatment of urban storm water (자동방류가 가능한 여과형 비점오염처리장치의 운전인자 도출)

  • Kim, Sun-Hee;Gwon, Eun-Mi;Pak, Sung-Soon;Joh, Seong-Ju;Lim, Chea-Hoan;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.377-386
    • /
    • 2010
  • To identify operating parameters of the up-flow filtering system, which is available to discharge filtering residue after the rain, developed for treatment of urban storm runoff, lab scale test was carried out. Removal efficiency of SS was 68.7%, 62.2%, and 58.6% at the area roading rate of 2.46m/h, 4.68m/h, and 10m/h, respectively, filtering device is desirable to operate at the lower than 4.68m/h of area roading rate to get higher level of 60% SS removal efficiency. The removal efficiency of SS was 57.1% ~ 68.7% at the raw water SS of 100mg/L ~ 600mg/L, and the SS in treated water was maintained at the constant level through the elapsed time. It is indicate that filtering device can guarantee a certain level of effluent water quality at various raw water quality. The removal efficiency of SS to the depth of filter media was 68.3%, 78.6% at the filter depth of 10 cm, 20cm respectively. The final treated water quality was showed 30.2mg/L of CODMn, 1.60mg/L of TN and 0.25mg/L of TP. The average removal efficiencies by filtering device developed in this research were recorded slightly lower levels than other research. The main reason of these results were the first, the filter depth of the media used in this test was shallow, the second, the kind of filter media in discharge port of residue. More research to kind of filter media, filter packing rate, select of media for residue discharge port should be go on to produce optimum operating condition. The result of this study would be valuable for the application of filtration device to control of urban storm water.

A laboratory study on synthetic fiber filter for further treatment of turbid stormwater from construction sites

  • Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • On the purpose of conform the more stringent government regulation for turbid stormwater from construction sites, the feasibility and availability of synthetic fiber placing after the conventional protection barrier were tested in this study. Initially, comparative work on the filtering performance of fiber media and conventional gravel filter was carried out, 27% higher filtration capacity was obtained under the similar operational conditions. The filter efficiency was about 20 to 52% with a varying filter depth of 5 to 15cm, presuming at extreme storm flow conditions (800-1500 m/day of filtration rates). Fiber filter was found to have a similar filtration prosperity as grain media; namely, the separation efficiency is directly and inversely proportional to filter depth and rate, respectively. The effects of filter aid (polyaluminium chloride) on filter performance was also investigated, it greatly affected the turbidity reduction at the dosage of 2 mg/L. At the time of breakthrough, a simple filter washing was carried out, herein, the solid recovery achieved over than 88% and greatly determined by operational parameters. Based on the operational data, the empirical models aimed for predicting filtration efficiency were established, which can effectively determine the required filter depth and filtration area in field.

A column study of effect of filter media on the performance of sand filter

  • Kim, Tae-hoon;Oh, Heekyong;Eom, Jungyeol;Park, ChulHwi
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.247-255
    • /
    • 2020
  • Sand filter is a key unit process for particle removal in water purification treatments. Its long-standing use is due to on-site customized retrofit. Proper selection of filter media is one of the retrofit approaches to improve filter performance. This study described a series of controlled laboratory column tests and examined the effects of media property on filtration and backwash. When sand media of 0.51 mm in effective size was replaced by sand of 0.60 mm, the filter run increased up to 5 times in the given bed depth. The change of media property required an increase of backwash rate by 0.05 m/min to satisfy the requirement of bed expansion, more than 20%. When the anthracite was changed with lower effective size and uniformity coefficient, correlation with sand in the filter bed could be satisfied within the permissible error between media and bulk characteristics. Besides, this selection resulted in a well-stratified configuration of media layers after bed expansion. The column study showed that the correlation of property between the dual media had a significant effect on the filter productivity and backwash interval.

Effects of the Ratio of Diatoms Length to the Effective Size of Filter Medium on Filter Clogging (규조류의 크기와 여재의 유효경이 여과지 폐색에 미치는 영향)

  • Jun, Hang-Bae;Lee, Young-Ju;Lee, Byung-Du;Ahn, Chang-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • The effects of the ratio of effective size of filter media and diatom size on filter run time were evaluated by using both reported data and experimental results from several water treatment plants. For single media at several WTPs, the range of probability of the filter run time less than 15hr was 10~60%, and for dual media, that of the filter run time less than 30hr was 10~20%. The major filter clogging algae was Synedra acus of which dominant ratio was in the range of 64~92%. The effective size(ES) of filter medium for dual media filter was 0.71~1.40mm and uniformity coefficient of the filter was 1.25~1.67. The effective size(ES) of filter medium for single medium filter was 0.52~0.65mm and uniformity coefficient of the filter was 0.25~1.40. The range of calculated penetration depth was 2.58~15.4cm for dual media and 1.29~2.17cm for single media, and average filter run time was 40.1~83.3hr and 13.9~34.9hr, respectively. When Synedra counts were over 400cells/ml for single media, filter run time was below 5hr, while filter run time for dual media filter, remained as high as 70hr.

  • PDF

Removal characteristics of NOMs in a slow sand filter at different media depth and operation time (완속여과공정에서 운전시간 및 여층깊이에 따른 자연유기물질(NOM) 제거 특성)

  • Park, Noh-Back;Park, Sang-Min;Seo, Tae-Kyeong;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.467-473
    • /
    • 2008
  • Natural organic matter (NOM) removal by physico-chemical adsorption and biological oxidation was investigated in five slow sand filters with different media depths. Non-purgeable dissolved organic carbon(NPDOC) and $UV_{254}$ absorbance were measured to evaluate the characteristics of NOM removal at different filter depths. Removal efficiency of NOM was in the range of 10-40% throughout the operation time. At start-up of the filters packed with clean sand media, NOM was probably removed by physico-chemical adsorption on the surface of sand through the overall layer of filter bed. However, when Schumutzdecke layer was built up after 30 days operation, the major portion of NPDOC was removed by biological oxidation and/or bio-sorption in lower depth above 50 mm. NOM removal rate in the upper 50 mm filter bed was $0.82hr^{-1}$. It was about 20 times of the rate($0.04hr^{-1}$) in the deeper filter bed. Small portion of NPDOC could be removed in the deeper filter bed by both bio-sorption and biodegradation. SEM analysis and VSS measurement clearly showed the growth of biofilm in the deeper filter bed below 500 mm, which possibly played an important role in the NOM removal by biological activity besides the physco-chemical adsorption mechanism