• Title/Summary/Keyword: Depth check

Search Result 244, Processing Time 0.036 seconds

Comparison of Seismic Responses of Underground Utility Tunnels Using Simplified Analysis Methods (단순화 해석 방법에 따른 지하공동구 지진 응답 산정 비교)

  • Kim, Dae-Hwan;Lim, Youngwoo;Seo, Hyun-Jeong;Lee, Hyerin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.205-213
    • /
    • 2024
  • In the seismic evaluation of underground utility tunnels, selecting an analytical method is critical to estimating reasonable seismic responses. In simplified pseudo-static analysis methods widely applied to typical seismic design and evaluation of underground tunnels in practice, it is essential to check whether the methods provide valid results for cut-and-cover tunnels buried in shallow to medium depth. The differences between the two simplified pseudo-static methods are discussed in this study, and the analysis results are compared to those obtained from FLAC models. In addition to the analysis methods, seismic site classification, overburden soil depth, and sectional configuration are considered variables to examine their effects on the seismic response of underground utility tunnels. Based on the analysis results, the characteristics derived from the concepts and details of each simplified model are discussed. Also, general observations are made for the application of simplified analysis methods.

A Study on Hydrographic Survey based on Acoustic Echo-Sounder and GNSS (음향측심기와 GNSS 기반의 수로측량에 관한 연구)

  • PARK, Eung-Hyun;KIM, Dae-Hyun;JEON, Hae-Yeon;KANG, Ho-Yun;YOO, Kyung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.119-126
    • /
    • 2018
  • In this study, In this study, the Datum Level-based hydrography surveying system and the ellipsoid-based system were analyzed to acquire more consistent depth data. For the study, the ellipsoid-based surveying for hydrography was conducted twice for the same track line. And the depth was calculated by correcting rise and fall of water level (water level change by tidal energy and other marine environmental energies) respectively by the traditional water level correction method and ellipsoidally referenced water level correction method. there is able to check that Ellipsoid-based hydrographic surveying data is more improved than Datum Level-based hydrographic surveying data in aspect of level difference phenomenon in the same area (surveying line). This result shows that if the Ellipsoid-based hydrographic surveying is performed, the sea level change (tidal energy and other marine environmental energy) of the survey area in real time could be reflected to more consistent generating bathymetric data.

A Study on the Mean Flow Velocity Distribution of Jeju Gangjung-Stream using ADCP (ADCP를 활용한 제주 강정천의 평균유속 분포 추정)

  • Yang, Se-Chang;Kim, Yong-Seok;Yang, Sung-Kee;Kang, Myung-Soo;Kang, Bo-Seong
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.999-1011
    • /
    • 2017
  • In this study, the Chiu-2D velocity-flow rate distribution based on theoretical background of the entropy probability method was applied to actual ADCP measurement data of Gangjung Stream in Jeju from July 2011 to June 2015 to predict the parameter that take part in velocity distribution of the stream. In addition, surface velocity measured by SIV (Surface Image Velocimeter) was applied to the predicted parameter to calculate discharge. Calculated discharge was compared with observed discharge of ADCP observed during the same time to analyze propriety and applicability of depth of water velocity average conversion factor. To check applicability of the predicted stream parameter, surface velocity and discharge were calculated using SIV and compared with velocity and flow based on ADCP. Discharge calculated by applying velocity factor of SIV to the Chiu-2D velocity-flow rate distribution and discharge based on depth of water velocity average conversion factor of 0.85 were $0.7171m^3/sec$ and $0.5758m^3/sec$, respectively. Their error rates compared to average ADCP discharge of $0.6664m^3/sec$ were respectively 7.63% and 13.64%. Discharge based on the Chiu-2D velocity-flow distribution showed lower error rate compared to discharge based on depth of water velocity average conversion factor of 0.85.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • 윤석준;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • Yoon S. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

Analysis of Urban Flood Damage Using SWMM5 and FLUMEN Model of Sadang Area in Korea

  • Li, Heng;Kim, Yeonsu;Lee, Seungsoo;Song, Miyeon;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.396-396
    • /
    • 2015
  • Frequent urban floods affect the human safety and economic properties due to a lack of the capacity of drainage system and the increased frequency of torrential rainfall. The drainage system has played an important role in flooding control, so it is necessary to establish the effective countermeasures considering the connection between drainage system and surface flow. To consider the connection, we selected SWMM5 model for analyzing transportation capacity of drainage system and FLUMEN model for calculating inundation depth and time variation of inundation area. First, Thiessen method is used to delineate the sub-catchments effectively base on drainage network data in SWMM5. Then, the output data of SWMM5, hydrograph of each manhole, were used to simulate FLUMEN to obtain inundation depth and time variation of inundation area. The proposed method is applied to Sadang area for the event occurred in $27^{th}$ of July, 2011. A total of 11 manholes, we could check the overflow from the manholes during that event as a result of the SWMM5 simulation. After that, FLUMEN was utilized to simulate overland flow using the overflow discharge to calculate inundation depth and area on ground surface. The simulated results showed reasonable agreements with observed data. Through the simulations, we confirmed that the main reason of the inundation was the insufficient transportation capacities of drainage system. Therefore cooperation of both models can be used for not only estimating inundation damages in urban areas but also for providing the theoretical supports of the urban network reconstruction. As a future works, it is recommended to decide optimized pipe diameters for efficient urban inundation simulations.

  • PDF

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

A study on the teacher's perception of personality area in the in-depth interview process of the selection of gifted children (영재 선발의 심층면접에서 인성에 대한 현장 교사들의 인식 분석)

  • Jang, KyeongHye;Park, Changun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.281-290
    • /
    • 2019
  • The study aims to analyze teachers' perception of the "personality" area, which can be subjective in the in-depth interview process of selecting gifted children and is easily shunned due to its weak immediate effect. To this end, First, when asked about their difficulties as gifted teachers, many of them answered "professionalism and workload" and cited personality as the most important area to address in-depth interviews in selecting gifted students. It also recognized that personality interviews are necessary for the most basic virtues of education and social contribution, and cited cooperation, consideration, and concession as the sub-components to be dealt with in the personality interview. It was necessary to check whether each student's capabilities were evaluated in a variety of ways in an in-depth interview of the teacher's observing and recommending system. And it needed to be supplemented by in-depth observations such as the development of a valid question, camp or debate in the evaluation of the personality area. In order to reflect the needs of the education field, it will be necessary to supplement the personality interview in the gifted children's selection. And there is also a need to continue to study how to guide the personality education of already selected gifted children.

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

Using Brake Controller Tester GEC, VVVF trains Study on the Improvement of Brake Controller Check (Brake Controller 시험기를 이용한 GEC, VVVF 전동차 Brake Controller 점검방법 개선에 관한 연구)

  • Cho, Tae-Young;Kang, Beom-Su;Choi, Jae-Weon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1358-1363
    • /
    • 2011
  • In this study, GEC, VVVF train is mounted in the cab on the Improvement of Brake Controller checks were carried out. Brake Controller in a single-acting snap action switches, double acting snap action switches, and terminals associated with all the parts individually checked, rather than the current trains, and the same conditions, the overall depth review and analysis through the improvements in the meantime, failure to advance found by processing station Minimal and directly related to the safety of disabled passengers, the train station to contribute to safety in this study began.

  • PDF