• Title/Summary/Keyword: Depth Control System

Search Result 653, Processing Time 0.025 seconds

Design of Uni-directional Optical Communication Structure Satisfying Defense-In-Depth Characteristics against Cyber Attack (사이버공격에 대비한 심층방호 특성을 만족하는 단방향 광통신 구조 설계)

  • Jeong, Kwang Il;Lee, Joon Ku;Park, Geun Ok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.12
    • /
    • pp.561-568
    • /
    • 2013
  • Instrumentation and control system in nuclear power plant performs protecting, controling and monitoring safety operation of Nuclear Power Plant. As cyber attack to the control equipment of instrumentation and control system can cause reactor shutdown and radiation release, it is required to design the instrumentation and control system considering cyber security in accordance with regulatory guides and industrial standards. In this paper, we proposed a design method of uni-directional communication structure which is required in the design of defense-in-depth model according to regulatory guides and industrial standards and we implemented a communication board with the proposed method. This communication board was tested in various test environments and test items and we concluded it can provide uni-directional communication structure required to design of defense-in-depth model against cyber attack by analyzing the results. The proposed method and implemented communication board were applied in the design of SMART (system-integrated modular advanced reactor) I&C (instrumentation and control) systems.

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.

A fuzzy sliding mode controller design for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

Extraction of depth information on moving objects using a C40 DSP board (C40 DSP 보드를 이용한 이동 물체의 깊이 정보 추출)

  • 박태수;모준혁;최익수;박종안
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.5-7
    • /
    • 1996
  • We propose a triangulation method based on stereo vision angles. We setup stereo vision systems which extract the depth information to a moving object by detecting a moving object using difference image method and obtaining the depth information by the triangulation method based on stereo vision angles. The feature point of a moving object is used the geometrical center of the moving object, and the proposed vision system has the accuracy of 0.2mm in the range of 400mm.

  • PDF

vehicle Control Algorithm based on Depth Sensor Measurement System (거리센서 계측기반 이동물체의 인식 알고리즘)

  • Kim, Jong-Man;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.6-9
    • /
    • 2008
  • A 3D depth measurement system is proposed for mobile vehicles. Depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to- the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Non-linear trail are included in this paper.

  • PDF

Controlling the Depth of Microchannels Formed during Rolling-based Surface Texturing

  • Bui, Quang-Thanh;Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.410-420
    • /
    • 2016
  • The geometric dimension and shape of microchannels that are formed during surface texturing are widely studied for applications in flow control, and drag and friction reduction. In this research, a new method for controlling the deformation of U channels during micro-rolling-based surface texturing was developed. Since the width of the U channels is almost constant, controlling the depth is essential. A calibration procedure of initial rolling gap, and proportional-integral PI controllers and a linear interpolation have been applied simultaneously to control the depth. The PI controllers drive the position of the pre-U grooved roll as well as the rolling gap. The relationship between the channel depth and rolling gap is linearized to create a feedback signal in the depth control system. The depth of micro channels is studied on A2021 aluminum lamina surfaces. Overall, the experimental results demonstrated the feasibility of the method for controlling the depth of microchannels.

Depth Estimation Through the Projection of Rotating Mirror Image unto Mono-camera (회전 평면경 영상의 단일 카메라 투영에 의한 거리 측정)

  • Kim, Hyeong-Seok;Song, Jae-Hong;Han, Hu-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.790-797
    • /
    • 2001
  • A simple computer vision technology to measure the middle-ranged depth with a mono camera and a plain mirror is proposed. The proposed system is structured with the rotating mirror in front of the fixed mono camera. In contrast to the previous stereo vision system in which the disparity of the closer object is larger than that of the distant object, the pixel movement caused by the rotating mirror is bigger for the pixels of the distant object in the proposed system. Being inspired by such distinguished feature in the proposed system, the principle of the depth measurement based on the relation of the pixel movement and the distance of object is investigated. Also, the factors to influence the precision of the measurement are analysed. The benefits of the proposed system are low price and less chance of occlusion. The robustness for practical usage is an additional benefit of the proposed vision system.

  • PDF

Performance Test of a Real-Time Measurement System for Horizontal Soil Strength in the Field

  • Cho, Yongjin;Lee, DongHoon;Park, Wonyeop;Lee, Kyouseung
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.304-312
    • /
    • 2016
  • Purpose: Soil strength has been measured using a cone penetrometer, which is making it difficult to obtain the spatial data required for precision agriculture. Our objectives were to evaluate real-time horizontal soil strength (RHSS) to measure soil strength in real time while moving across the field. Using the RHSS data, the tillage depth was determined, and the power consumption of a tractor and rotavators were compared. Methods: The horizontal soil-strength index (HSSI) obtained by the RHSS was compared with the cone index (CI), which was measured using a cone penetrometer. Comparison analysis in accordance with the measurement depth that increased at 5-cm interval was conducted using kriged maps at six sensing depths. For tillage control and evaluation of the power consumption, the system was installed with a potentiometer for tillage depth, a torque sensor from the rear axle, and a power take-off (PTO) shaft. Results: The HSSI was lower than the CI, but they were the same at 54.81% of the total grids for the 5-cm depth and at 3.85% for the 10-cm depth. In accordance with the recommended tillage map, tillage operations between 0 and 15 cm left 2.3% and 7% residue cover on the soil, and that between 20 and 10 cm covered a wider utilization of 3% and 18.4%, respectively. When the tillage depth was 15 cm, the comparison result of the power requirements between the PTO and rear axle in terms of control performance revealed that the maximum power requirements of the axle and PTO were 44.63 and 23.24 kW, respectively. Conclusions: An HSSI measurement system was evaluated by comparison with the conventional soil strength measurement system (CI) and applied to a tractor to compare the tillage power consumption. Further study is needed on its application to various farm works using a tractor for precision agriculture.

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

A study on the wave control function of ecosystem control structures (생태계제어 구조물의 파랑제어 효과에 관한 연구)

  • 김현주;류청로;손원식
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.149-159
    • /
    • 1996
  • Multipurpose development of the coast and ocean can be considered as multifunction construction combining the functions of coastal protection, waterfront amenity and creation or rehabilitation of habitats. Multfunction development of coastal and ocean spaces can be accomplished by applying the ecosystem control structure of artificial habitats which will cultivate fishing ground with ecological harmony to the coastal protection system. To evaluate the applicability of ecosystem control structures as as fundamental coastal protection structure, wave control function of the structure is studied by numerical and physical analyses. Dimensional analysis and hydraulic experiment point out the importance of width and crest depth of ecosystem control structure, construction water depth and wave steepness. Wave control efficiency is estimated by the attenuation coefficient $(K_H)$ according to wave steepness $(H_0/L_0)$, relative constructed water depth $(h_i/H_0)$, relative berm width $(B/L_0)$ and relative crest depth $(h_B/H_0)$ of eosystem control structure. Empirical fomulas are suggested based on the results of model test by applying the multiple model based on this experimental results and numerical wave shoaling-dissipation-breaking model appears to be valid for the analysis of wave transformation around ecosystem control structure in the coastal waters.

  • PDF