• Title/Summary/Keyword: Depressurization

Search Result 114, Processing Time 0.023 seconds

Evaluation for Effectiveness of Radon Mitigation on Dwellings and Public Buildings in Korea (건축물 유형에 따른 라돈 저감 효과 평가)

  • Lee, DongHyun;Ryu, Seung-Hun;Jo, JungHeum;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.518-527
    • /
    • 2014
  • Objectives: The adverse health effects attributed to exposure to radon have been well known over the world. However, the efforts for prevention and mitigation of radon have not been taken in Korea so far. The purpose of this study was to evaluate the effectiveness of mitigation methods applied for various types of houses and public buildings with high level of radon. Methods: Based on the results of "National Radon Survey" performed by the National Institute of Environmental Research(NIER) in 2010-2012, we selected 30 candidate buildings consisting of 20 houses and 10 public buildings with greater than $148Bq/m^3$ of radon level. We measured the concentration of radon in 30 buildings, using E-PERMs and RAD-7 during January to March of 2013. More than five E-PERMs and one RAD-7 per house were installed for seven days. Ten houses and five public buildings were finally chosen to be mitigated after mainly considering the level of radon and the location of buildings nationwide. Three mitigation methods such as Sealing, two types of Active Ventilation(window-shaped and wall-typed ventilations), and Active Soil Depressurization(ASD) were applied, and the concentrations of radon were measured before and after mitigation, respectively. To evaluate the effectiveness of mitigation methods, reduction rates of radon were calculated and Wilcoxon's signed-rank test was performed. Results: The mean concentration of 15 buildings just before radon mitigation was $297.8Bq/m^3$, and most of the buildings were located in Gangwon, Chungbuk, Chungnam, and Daegu areas(73.3%), and built in 1959-1998. The level of radon decreased from 48% to 90% and kept the below recommendation limit of $148Bq/m^3$ after installation of radon mitigation. Among mitigation methods applied, the reduction rate(58.7-90.4%) of radon attributed to ASD was the greatest than that of other methods, followed by Active Ventilation(48.4-78.4%) and Sealing(<22%). The effectiveness of radon reduction by window-shaped Active Ventilation(63.2-75.2%) was relatively better than that of wall-typed Active Ventilation(48.4-54.3%). Conclusions: The results of this study indicate that ASD could be more effective for radon mitigation. Moreover, our findings would be background information in future for making the strategy for radon mitigation nationwide, as well as for developing Korean-version of mitigation techniques according to types of dwellings in Korea.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

Analysis of Total Loss of Feedwater Event for the Determination of Safety Depressurization Bleed Capacity (안전감압계통의 방출유량을 결정하기 위한 완전급수상실사고 해석)

  • Kwon, Young-Min;Song, Jin-Ho;Ro, Tae-Sun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.470-482
    • /
    • 1995
  • The Ulchin 3&4, which are 2825 MWt PWRs, adopted Safety Depressurization System (SDS) to mitigate the beyond design basis event of Total Less of Feedwater(TLOFW). In this study the results and methodology of the analyses for the determination of SDS bleed capacity are discussed. The SDS design bleed capacity has been determined from the CEFLASH-4AS/REM simulation according to the following design criteria : 1) Each SDS flow path, in conjunction with one of two High Pressure Safety Injection (HPSI) pumps, is designed to have a sufficient capacity to prevent core uncovery if one SDS path is opened simultaneously with the opening of the Pressurizer Safety Valves (PSVs). 2) Both SDS bleed paths are designed to have sufficient total capacity with both HPSI pumps operating to prevent core uncovery if the Feed and Bleed (F&B) initiation is delayed up to thirty minutes from the time of the PSVs lift. To verify the results of CEFLASH-4AS/REM simulation a comparative analysis kas also been per-formed by more sophisticated computer code, RELAP5/MOD3. The TLOFW event without operator recovery and TLOFW event with F&B are analyzed. The predictions by the CEFLASH-4AS/REM of the transient too phase system behavior are in good qualitative and quantitative agreement with those by the RELAP5/MOD3 simulation. Both of the results of analyses by CEFLASH-4AS/REM and RELAP5/MOD3 have demonstrated that decay heat removal and core inventory make-up can be successfully accomplished by F&B operation during now event for the Ulchin 3&4.

  • PDF

Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber (연소실 압력 강하에 의한 고체 추진제의 동적 소화)

  • Jeong, Ho-Geol;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2002
  • Dynamic extinction of solid propellants subjected to rapid pressure drop was studied with the aid of energy equation of condensed phase and flame model in gas phase. It is found that the total residence time($\tau_\gamma$) which measures the residing time of fuel in the reaction zone may play a crucial role in determining the dynamic response of the combustuion to extinction. Residence time was modeled by various combinations of diffusion and chemocal kinetic time scale. Effect of pressure history coupled with chamber volume on the extinction response was also performed and was found that dynamic extinction is more susceptible in a confined chamber than in open geometry. And, dynamic extinction was revealed to be affected profoundly by diffysion time scale rather than chemical kinetic time scale.

Investigation of $I_c$ Degradation Behavior in Bent Bi-2223 Tapes under Pressurized Liquid Nitrogen using a $\rho-shaped$ Sample Holder

  • Shin Hyung-Seop;Dizon John Ryan C.;Choi Ho-Yeon;Ha Dong-Woo;Oh Sang-Soo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.4-9
    • /
    • 2005
  • The degradation behavior of the critical current $(I_c)$ of Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated using a newly developed p-shaped sample holder which gives a series of bending strains to a sample. Three kinds of commercially available multi-filamentary Bi-2223 superconducting tapes were used. At atmospheric pressure, the Ie degradation behavior depended on the manufacturing process undergone by each tape. The tapes externally reinforced or densified by over pressure showed better bending strain tolerance than the Ag alloy-sheathed Bi-2223 tape. But these tapes showed a significant $I_c$ degradation when pressurized to 1 MPa in liquid nitrogen. For all samples, after depressurization to atmospheric pressure from 1 MPa, the Ie was completely recovered to its initial values at atmospheric pressure. When the samples were subjected to a thermal cycle wherein the tape was warmed up to room temperature after being depressurized from 1 MPa, it was found that the larger degradation of $I_c$ occurred at the regions where significant ballooning occurred, such as $0\%\;and\;0.2\%$. However, an improved ballooning damage tolerance was observed in the highly-densified tape.

Coating of LSM Ink in the Layered Planar Type SOFC (적층 평판형 SOFC에서 LSM 전극 코팅)

  • Lee, Sung-Il;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.552-557
    • /
    • 2012
  • In this study, we have coated the inner surface of YSZ channel using LSM powder ink through depressurization process for making the cathode of a stacked planar-type SOFC module. To coat the surface of YSZ channel uniformly, we tried to find the optimum manufacturing condition for LSM ink. We used four different dispersants (BYK series) and two different solvents (ethanol and DMF) to make the LSM ink. It was revealed that the ink made with the ethanol solvent and the BYK-111 dispersant has the lowest viscosity, relatively low contact angle and most excellent dispersibility. After depressurizing a chamber filled with LSM ink and sintered YSZ channel, we have found that the YSZ channel was uniformly coated with LSM cathode. The LSM ink with 25 vol% BYK-111 showed the most uniform coating.

Study of Air Clearing during Severe Transient of Nuclear Reactor Coolant System (원자로 사고 또는 과도상태시 공기방출현상에 대한 연구)

  • Bae Yoon Yeong;Kim Hwan Yeol;Song Chul-Hwa;Kim Hee Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.835-838
    • /
    • 2002
  • An experiment has been performed using a facility, which simulates the safety depressurization system (SDS) and in-containment refueling water storage tank (IRWST) of APR1400, an advanced PWR being developed in Korea, to investigate the dynamic load resulting from the blowdown of steam from a steam generator through a sparser. The influence of the key parameters, such as air mass, steam pressure, submergence, valve opening time, and pool temperature, on frequency and peak toads was investigated. The blowdown phenomenon was analyzed to find out the real cause of the initiation of bubble oscillation and discrepancy in frequencies between the experiment and calculation by conventional equation for bubble oscillation. The cause of significant damping was discussed and is presumed to be the highly tortuous flow path around bubble. The Rayleigh-Plesset equation, which is modified by introducing method of image, reasonably reproduces the bubble oscillation in a confined tank. Right after the completion of air discharge the steam discharge immediately follows and it condenses abruptly to provide low-pressure pocket. It may contribute to the negative maximum being greater than positive maximum. The subsequently discharging steam does not play as at the driving force anymore.

  • PDF

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.

Infiltration Characteristics of Particulate Matter at a Korean Apartment House (국내 아파트의 미세먼지 유입 특성)

  • Joo, SangWoo;Ji, JunHo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • Infiltration characteristics of airborne particulate matter had been investigated in real-life for about 90 days over 2 years in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 ㎡. Airtightness was measured by fan depressurization, and the ACH50 was 2.41 times per hour. In and outdoor particle concentrations were measured by optical particle counters. Infiltration factors and filtration efficiencies of the house, which reflect the removal of outdoor particles penetrating building envelope and the deposition inside a building, were obtained from data screened based on an empirical evaluation process. Infiltration factor of fine particles showed a range from about 42% at 0.4 m/s of wind speed to 72% at 4.2 m/s of wind speed with closed windows and doors. Filtration efficiency was like a MERV 13 grade filter with an open window outside at a balcony at low outdoor wind speed under 1 m/s. The grade decreased to MERV 11 by opening another outside window at the other balcony. Filtration efficiencies decreased as much as 29% in average at a range of 0.3~2.5 ㎛.