• Title/Summary/Keyword: Deposition property

Search Result 589, Processing Time 0.186 seconds

Field-emission Properties and Long-term Stability of Tip-type Carbon Nanotubes Coated with Gallium-incorporated Zinc Oxide Films (갈륨이 첨가된 산화아연막의 코팅에 따른 미세팁 구조 탄소나노튜브의 전계방출 특성 및 장시간 안정성)

  • Kim, Jong-Pil;Noh, Young-Rok;Jo, Kyoung-Chul;Lee, Sang-Yeol;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.65-69
    • /
    • 2009
  • Carbon nanotubes (CNTs) were coated with undoped zinc oxide (ZnO) or 5 wt% gallium-incorporated ZnO (GZO) using various deposition conditions. The CNTs were directly grown on conical-type tungsten substrates at $700^{\circ}C$ using inductively coupled plasma-chemical vapor deposition. The pulsed laser deposition technique was used to deposit the ZnO and GZO thin films with very low stress. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy were used to monitor the variations in the morphology and microstructure of CNTs prior to and after ZnO or GZO coating. The formation of ZnO and GZO films on CNTs was confirmed using energy-dispersive x-ray spectroscopy. In comparison to the as-grown (uncoated) CNT emitter, the CNT emitter that was coated with a thin (10 nm) GZO film showed remarkably improved field emission characteristics, such as the emission current of $325\;{\mu}A$ at 1 kV and the threshold field of $1.96\;V/{\mu}m$ at $0.1\;{\mu}A$, and it also exhibited the highly stable operation of emission current up to 40 h.

  • PDF

Effects of Sputter Deposition Rate on the Thin Film Property (Sputtering 성막속도가 박막의 특성에 미치는 영향)

  • Lee, Ky-Am
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.152-160
    • /
    • 1993
  • In this study, we have investigated the influence of sputtering conditions (Ar pressure input powers, substrates) on coercivity and microstructures of GdFe, Co, CoCr thin films produced by the method of DC magnetron sputtering. In GdFe films, we have observed that the Gd atomic ratio was decreased with the deposition rate, and deposition rate decreased with the pressure of Ar gas and the increased linearly with input power. It was also observed that the coercivity of thin films was increased with input power. In Co films, we have investigated the deposition was increased and the Co thin film became finer structure with the increase in the input power, was increased and the Co thin film became finer structure with the increase in the input power, and the deposition rate was decreased with the pressure of Ar gas. In CoCr films, we have investigated the effects of substrates on the coercivity $(H_c)$ and the microstructure. We have found that the substrates plays a crucial role in the microstructure and the coercivity $(H_c)$.

  • PDF

Deposition of Plasma Polymerized Films on Silicon Substrates Using Plasma Assisted CVD Method For Low Dielectric Application

  • Kim, M.C.;S.H. Cho;J.H. Boo;Lee, S.B.;J.G. Han;B.Y. Hong;S.H. Yang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.72-72
    • /
    • 2001
  • Plasma polymerized thin films have been deposited on Si(lOO) substrates at $25-400^{\circ}C$ using thiophene ($C_4H_4S$) precursor by plasma assisted chemical vapor deposition (PACVD) method for low-dielectric device application. In order to compare physical properties of the as-grown thin films, the effects of the plasma power, gas flow ratio and deposition temperature on the dielectric constant and thermal stability were mainly studied. XRD and TED studies revealed that the as-grown thin films have highly oriented amorphous polymer structure. XPS data showed that the polymerized thin films that grown under different RF power and deposition temperature as well as different gas ratio of $Ar:H_2$ have different stoichiometric ratio of C and S compared with that of monomer, indicating a formation of mixture polymers. Moreover, we also realized that oxygen free and thermally stable polymer thin films could be grown at even $400^{\circ}C$. The results of SEM, AFM and TEM showed that the polymer films with smooth surface and sharp interface could be grown under various deposition conditions. From the electrical property measurements such as I-V and C-V characteristics, the minimum dielectric constant and the best leakage current were obtained to be about 3.22 and $10-11{\;}A/\textrm{cm}^2$, respectively.

  • PDF

Low Temperature Consolidation of Silica Film by Flame Hydrolysis Deposition (FHD 공정으로 제조한 실리카 막의 저온 고밀화)

  • Kim, Tae-Hong;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.278-285
    • /
    • 2002
  • For planar optical devices, silica film deposited by FHD was fabricated at low temperature. To prepare silica film at low temperature, we have changed B, P amounts and investigated consolidation effect with varying consolidation temperature and atmosphere on microstructural change, and also observed optical property. The optimum consolidation temperature in He was lower than that of other atmosphere, its temperature could be lowered to 1050$^{\circ}C$. As a result, the roughness of flat silica film prepared at 1050$^{\circ}C$ showed 5, 6nm.

Hydrophobic Properties of PTFE Thin Films Deposited on Glass Substrates Using RF-Magnetron Sputtering Method (고주파 마그네트론 스퍼터링 방법을 사용하여 유리 기판 위에 증착된 PTFE 박막의 발수 특성)

  • Kim, Hwa-Min;Kim, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.886-890
    • /
    • 2010
  • The polytetrafluoroethylene (PTFE) films are deposited on glass using conventional rf-magnetron sputtering method. Their hydrophobic properties are investigated for application as an anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films largely depends on the sputtering conditions, such as Ar gas flow and deposition time during sputtering process. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-spluttered PTFE films. In particular, the PTFE film with 1950 nm thickness deposited for 30 minute at rf-power 50 W shows a very excellent optical transmittance of over 90% and a good anti-fouling property and a good durability.

Titanium Oxide Film : A New Biomaterial For Artificial Heart Valve Prepared by Ion Beam Enhanced Deposition

  • Liu, Xianghuai;Zhang, Feng;Zheng, Zhihong;Huang, Nan
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.1-15
    • /
    • 1997
  • Titanium oxide films were prepared by ion beam enhanced deposition where the films were synthesized by deposition titianium atoms and simultaneously bombarding with xenon ion beam at an energy of 40 keV in an $O_2$ environ,ent. Structure and composition of titanium oxide films were investigated by X-ray Doffractopm (XRD) Ritjerfprd Backscattering Spectroscopy (RBS) and X-ray Diffraction(XRD) Rutherford Backscattering Spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) The results show that thestructure of the prepared films exhibit a rutile phase structure wit high(200) orientation and the O/Ti ratio of the titanium oxide films was about 2:1 XPS anlysis shows that $Ti^{2+},Ti^{3+}\;and\;Ti^{4+}$ chemical states exist on the titanium oxide films. the blood compatibility of the titanium oxide films was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide films improved significantly and better than that of LTI-carbon which was widely used to fabricate artificial heart valve.

  • PDF

Experimental Investigation on the Pool Boiling Critical Heat Flux of Water-Based Alumina and Titania Nanofluids on a Flat Plate Heater (평판형 히터를 이용한 알루미늄과 타이타늄 산화물 나노유체의 풀비등 임계열유속에 관한 실험적 연구)

  • Ahn, Ho-Seon;Kim, Hyung-Dae;Jo, Hang-Jin;Kang, Soon-Ho;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.729-736
    • /
    • 2009
  • Pool boiling heat transfer and critical heat flux (CHF) of water-based nanofluids with alumina and titania nanoparticles of 0.01% by volume were investigated on a disk heater at saturated and atmospheric conditions. The experimental results showed that the boiling in nanofluids caused the considerable increase in CHF on the flat surface heater. It was revealed by visualization of the heater surface subsequent to the boiling experiments that a major amount of nanoparticles deposited on the surface during the boiling process. Pool boiling of pure water on the surface modified by such nanoparticle deposition resulted in the same CHF increases as what boiling nanofluids, thus suggesting the CHF enhancement in nanofluids was an effect of the surface modification through the nanoparticle deposition during nanofluid boiling. Possible reasons for CHF enhancement in pool boiling of nanofluids are discussed with surface property changes caused by the nanoparticle deposition.

Hydrogen annealing effect of ferroelectric films fabricated by pulsed laser deposition (펄스 레이저 증착법으로 층착된 강유전 박막의 수소후열처리에 관한 효과 연구)

  • 한경보;전창훈;전희석;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.395-397
    • /
    • 2002
  • Dielectric thin films of Pb$\_$0.72/La$\_$0.28/Ti$\_$0.93/O$_3$(PLT(28)) have been deposited on Pt(111)/Ti/SiO$_2$/Si(100) substrates in-situ by pulsed laser deposition using different annealing and deposition processes. We have investigated the effect of hydrogen annealing on the ferroelectric properties of PLT thin films and found that the annealing process causes the diffusion of hydrogen into the ferroelectric film resulting in the destruction of polarization. Two-step process to grow PLT films was adopted and verified to be useful to enlarge the grain size of the film. Structural properties including dielectric constant, and ferroelectric characteristics of PLT thin films were shown to be strongly influenced by grain size. The film deposited by using two-step process including pre-annealing treatment has a strong (111) orientation. However, the films deposited by using single-step process with hydrogen annealing process shows the smallest grain size.

  • PDF

Electrical property improvement of ZnO:Al transparent conducting oxide thin film as surface treatment of polymer substrate (폴리머 기판의 표면개질을 통한 ZnO:Al 투명전도막의 전기적 특성 개선)

  • Paeng, Sung-Hwan;Jung, Ki-Young;Park, Byung-Wook;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1352-1353
    • /
    • 2008
  • In this study, aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET(polyethylen terephthalate) substrate by r.f. magnetron sputtering method. PET substrate was surface-treated in an atmospheric pressure DBD(dielectric barrier discharge) plasma to increase deposition rate and to improve electrical propesties. Morphological changes by DBD plasma were obsered using contact angle measurement. The contact angle of water on PET was reduced from 62$^{\circ}$ to 42$^{\circ}$ by DBD plasma surface treatment. The plasma treatment also increased deposition rate and electrical propesties. The electrical resistivity as low as $4.97{\times}10^{-3}[{\Omega}-cm]$ and the deposition rate of 234[${\AA}$-m/min] were obtained in ZnO:Al film with surface treatment time of 5min, and 20min., respectively.

  • PDF

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.