• 제목/요약/키워드: Deposition process

검색결과 2,752건 처리시간 0.027초

기준패턴과 증착패턴의 동시 측정을 통한 OLED 공정 검사 방법 (A Novel OLED Inspection Process Method with Simultaneous Measurement for Standard and Deposition Pattern)

  • 곽병호;최경주
    • 디지털산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.63-70
    • /
    • 2019
  • The subject of the simultaneous measuring system of base pattern and deposition pattern is a new research topic on a defect inspection of OLED. In this paper, we propose a new OLED inspection method that simultaneously measures standard and deposition pattern images. This method reduces unnecessary processes and tac time during OLED inspection. For an additional reduction of the tac time during pattern measurement, the ROI was configured to measure only in the designated ROI area instead of measuring the entire area of an image. During the ROI set-up, the value of effective deposition pattern area is included so that if the deposition pattern is out of the ROI zone, it would be treated as a defect before measuring the size and center point of the pattern. As a result, the tac time and inspection process could be shortened. The proposed method also could be applied to the OLED manufacturing process. Production of OLED could be increased by reducing tac time and inspection process.

외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구 (An experimental study of heat transfer and particle deposition during the outside vapor deposition process)

  • 김재윤;조재걸
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

New SMOLED Deposition System for Mass Production

  • Lee, J.H.;Kim, C.W.;Choi, D.K.;Kim, D.S.;Bae, K.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.407-410
    • /
    • 2003
  • We will introduce our new concept deposition system for SMOLED manufacturing in this conference. This system is designed to deposit organic and metal material to downward to overcome the limit of substrate size and process tact time hurdle for OLED mass production, and is organized with organic deposition chamber, substrate pre-cleaning chamber, metal deposition chamber and encapsulation system. These entire process chambers are integrated with linear type substrate transfer system. We also compare our new SMOLED manufacturing system with conventional vacuum deposition systems, and show basic organic thin film property data, organic material deposition property data, and basic device property.

  • PDF

통계적 기법을 이용한 선택적 CVD 텅스텐 공정 최적화 연구 (The Optimization of the Selective CVD Tungsten Process using Statistical Methodology)

  • 황성보;최경근;박흥락;고철기
    • 전자공학회논문지A
    • /
    • 제30A권12호
    • /
    • pp.69-76
    • /
    • 1993
  • The statistical methodology using RSM (response surface method) was used too ptimize the deposition conditions of selective CVD tungsten process for improving the deposition rate and the adhesion property. Temperature, flow rate of SiH$_4$ and WF$_6$ and H$_2$ and Ar carrier gases were chosen for the deposition variables and process characteristics due to carrier gas were intensively investigated. It was observed that temperature was the main factor influencingthe deposition rate in the case of H$_2$ carrier gas while the reactant ratio, $SiH_{4}/WF_{6}$, had the principal effect on the deposition rate in the case of Ar carrier gas. The increased deposition rate and the good adhesion to Si were obtained under Ar carrier gas compared to H$_2$ carrier gas. The optimum conditions for deposition rate and antipeeling property were found to be the temperature range of 300~32$0^{\circ}C$ and the reactant ratio, $SiH_{4}/WF_{6}$, of 0.5~0.6.

  • PDF

고효율 TOPCon 태양전지의 SiOX/poly-Si박막 형성 기법과 passivating contact 특성 (Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells)

  • 김성헌;김태용;정성진;차예원;김홍래;박소민;주민규;이준신
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.29-34
    • /
    • 2022
  • The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.

FDM에서 곡면부의 접선기울기가 제품의 표면에 미치는 영향 (Influence of Tangent Line Angle on Surface Roughness at Fused Deposition)

  • 하만경;전재억
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.23-28
    • /
    • 2002
  • Fused deposition modelling(FDM) is a rapid prototyping(RP) process that fabricates part layer by layer by deposition of molte thermoplastic material extrude from a nozzle. RP system has benefits. Benefit would be the ability to experiment with physical objects of any complexity m a relatively short period of time. But it has a matter of surface roughness and geometric accuracy. We study on Influence of tangent line angle on surface roughness at fused deposition.

  • PDF

AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구 (Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders)

  • 서자예;윤희석;이기용;심도식
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Manipulation of Perpendicular Anisotropy in FePt Patterned Media for Ultra-high Density Magnetic Recording

  • Kim, Hyun-Su;Noh, Jin-Seo;Roh, Jong-Wook;Chun, Dong-Won;Kim, Sung-Man;Jung, Sang-Hyun;Kang, Ho-Kwan;Jeung, Won-Yong;Lee, Woo-Young
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2010년도 임시총회 및 하계학술연구발표회
    • /
    • pp.70-71
    • /
    • 2010
  • In this study, We fabricated FePt-based perpendicular patterned media using a selective combination of E-beam lithography and either Ar plasma etching (deposition-first process) or FePt lift-off (deposition-last process). We employed the deposition-last process to avoid chemical and structural disordering by impinging Ar ions (deposition-first process). For a patterned medium with 100 nm patterns made by this process, the out-of-plane coercivity was measured to be 5 fold larger than its in-plane value. The deposition-last process may be a promising way to achieve ultra-high density patterned media.

  • PDF

Effect of a Multi-Step Gap-Filling Process to Improve Adhesion between Low-K Films and Metal Patterns

  • Lee, Woojin;Kim, Tae Hyung;Choa, Yong-Ho
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.427-429
    • /
    • 2016
  • A multi-step deposition process for the gap-filling of submicrometer trenches using dimethyldimethoxysilane (DMDMOS), $(CH_3)_2Si(OCH_3)_2$, and $C_xH_yO_z$ by plasma enhanced chemical vapor deposition (PECVD) is presented. The multi-step process consisted of pre-treatment, deposition, and post-treatment in each deposition step. We obtained low-k films with superior gap-filling properties on the trench patterns without voids or delamination. The newly developed technique for the gap-filling of submicrometer features will have a great impact on inter metal dielectric (IMD) and shallow trench isolation (STI) processes for the next generation of microelectronic devices. Moreover, this bottom up gap-fill mode is expected to be universally for other chemical vapor deposition systems.