• Title/Summary/Keyword: Deposition Growth Rate

Search Result 451, Processing Time 0.017 seconds

Effect of substrate bias voltage on a-C:H film (기판 bias 전압이 a-C:H 박막의 특성에 미치는 영향)

  • 유영조;김효근;장홍규;오재석;김근식
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.348-353
    • /
    • 1997
  • Hydrogenated amorphous carbon(a-C:H) films were deposited on p-type Si(100) by DC saddle-field plasma enhanced CVD to investigate the effect of substrate bias on optical properties and structural changes. They were deposited using pure methane gas at a wide range of substrate bias at room temperature and 90 mtorr. The substrate bias voltage ($V_s$) was employed from $V_s=0 V$ to $V_s=400 V$. The information of optical properties was investigated by photoluminescence and transmitance. Chemical bondings of a-C:H have been explored from FT-IR and Raman spectroscopy. The thickness and relative hydrogen content of the films were measured by Rutherford backscattering spectroscopy (RBS) and elastic recoil detection (ERD) technigue. The growth rate of a-C:H film was decreased with the increase of $V_s$, but the hydrogen content of the film was increased with the increase of $V_s$. The a-C:H films deposited at the lowest $V_s$ contain the smallest amount of hydrogen with most of C-H bonds in the of $CH_2$ configuration, whereas the films produced at higher $V_s$ reveal dominant the $CH_3$ bonding structure. The emission of white photoluminescence from the films were observed even with naked eyes at room temperature and the PL intensity of the film has the maximum value at $V_s$=200 V. With $V_s$ lower than 200 V, the PL intensity of the film increased with V, but for V, higher than 200 V, the PL intensity decreased with the increase of $V_s$. The peak energy of the PL spectra slightly shifted to the higher energy with the increase of $V_s$. The optical bandgap of the film, determined by optical transmittance, was increased from 1.5 eV at $V_s$=0V to 2.3 eV at $V_s$=400 V. But there were no obvious relations between the PL peak and the optical gap which were measured by Tauc process.

  • PDF