• Title/Summary/Keyword: Deploying Energy

Search Result 35, Processing Time 0.018 seconds

A Security Monitoring System for Security Information Sharing and Cooperative Countermeasure (협력대응기반 전역네트워크 보안정보공유 시스템)

  • Kim, Ki-Young;Lee, Sung-Won;Kim, Jong-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.60-69
    • /
    • 2013
  • Highlighted by recent security breaches including Google, Western Energy Company, and the Stuxnet infiltration of Iranian nuclear sites, Cyber warfare attacks pose a threat to national and global security. In particular, targeted attacks such as APT exploiting a high degree of stealthiness over a long period, has extended their victims from PCs and enterprise servers to government organizations and critical national infrastructure whereas the existing security measures exhibited limited capabilities in detecting and countermeasuring them. As a solution to fight against such attacks, we designed and implemented a security monitoring system, which shares security information and helps cooperative countermeasure. The proposed security monitoring system collects security event logs from heterogeneous security devices, analyses them, and visualizes the security status using 3D technology. The capability of the proposed system was evaluated and demonstrated throughly by deploying it under real network in a ISP for a week.

A Study on an Efficient Routing Scheme for using a priority scheme in Wireless Sensor Networks (무선 센서 네트워크 환경에서 우선순위 기법을 이용한 효율적인 경로 설정에 대한 연구)

  • Won, Dae-Ho;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.40-46
    • /
    • 2011
  • Wireless Sensor Networks(WSNs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm of cross-layer control between 2-layer and 3-layer to deriver the sensing data from the end node to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self priority routing scheme under UC Berkely TinyOS platform. The proposed beacon based priority routing (BPR) algorithm scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images (명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법)

  • Lee, Gyuhyun;Quan, Tran Minh;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.

TeloSIM: Instruction-level Sensor Network Simulator for Telos Sensor Node (TeloSIM: Telos 형 센서노드를 위한 명령어 수준 센서네트워크 시뮬레이터)

  • Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1021-1030
    • /
    • 2010
  • In the sensor network, many tiny nodes construct Ad-Hoc network using wireless interface. As this type of system consists of thousands of nodes, managing each sensor node in real world after deploying them is very difficult. In order to install the sensor network successfully, it is necessary to verify its software using a simulator beforehand. In fact Sensor network simulators require high fidelity and timing accuracy to be used as a design, implementation, and evaluation tool of wireless sensor networks. Cycle-accurate, instruction-level simulation is the known solution for those purposes. In this paper, we developed an instruction-level sensor network simulator for Telos sensor node as named TeloSlM. It consists of MSP430 and CC2420. Recently, Telos is the most popular mote because MSP430 can consume the minimum energy in recent motes and CC2420 can support Zigbee. So that TeloSlM can provide the easy way for the developers to verify software. It is cycle-accurate in instruction-level simulator that is indispensable for OS and the specific functions and can simulate scalable sensor network at the same time. In addition, TeloSlM provides the GUI Tool to show result easily.