• Title/Summary/Keyword: Deployable satellite antenna

Search Result 12, Processing Time 0.02 seconds

Mechanism Modeling and Analysis of Deployable Satellite Antenna (전개형 위성 안테나 메커니즘 모델링 및 분석)

  • Lee, Seung-Yup;Jeong, Suk-Yong;Choi, Yoon-Hyuk;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.601-609
    • /
    • 2014
  • Large number of SAR(Synthetic Aperture Radar) satellites, one type of earth observation satellite, have been developed as they have the advantage of not being affected by surrounding environment during the earth image acquisition. In order to gain high image quality, SAR antenna should have large diameter. However, internal space of satellite launch vehicle is limited and this leads SAR antenna to be designed deployable so that it can be folded in launch vehicle and unfolded in space. In this research, values of various design factors of deployable satellite antenna were chosen considering satellite's target mission. Configuration of deployable satellite antenna was designed by applying the chosen values of design factors, and variation in deployable satellite antenna during satellite maneuver was observed through simulation.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Design of Deployable Lightweight Antenna for Satellite SAR (위성 SAR 센서용 전개형 경량화 안테나 설계)

  • Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1104-1112
    • /
    • 2014
  • We present a design of the deployable lightweight antenna to be used in the satellite satisfying the required performance of the onboard sensor. The analysis is performed on the SAR antenna requirements, deploying techniques including material selection, and the characterization of deployable antenna with central disk. The performance of the solid deployable antennas and the mesh antennas are simulated, and the CFRP(Carbon Fiber Reinforced Plastics) samples are manufactured and tested. It is confirmed that the deployable antennas with central disk can meet the required performance by using deploying panels or mesh.

Deployable Communication Antenna Alignment for Geostationary Satellite (정지궤도 위성의 전개형 통신 안테나 정밀정렬)

  • Choi, Jung-Su;Moon, Sang-Mu;Yoon, Yong-Sik;Kim, Hyung-Wan;Choi, Sung-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.279-288
    • /
    • 2011
  • This paper will discuss the alignment techniques and measurement results of geostationary satellite communication antennas for correct antenna pointing and also the fixtures. To get the best performance in terms of antenna pointing and fixtures, zero G condition have been simulated and laser tracker and theodolite system have been applied. As a result, alignment stability was verified within the tolerance, ${\pm}\;0.25mm$ and ${\pm}\;0.013^{\circ}$ and finally Ka-band deployable antenna alignment has been accomplished within the tolerance, ${\pm}\;0.5mm$ and ${\pm}\;0.015^{\circ}$.

Configuration design of a deployable SAR antenna for space application and tool-kit development (위성용 전개형 SAR 안테나 형상 설계 및 툴킷 개발)

  • Jeong, Suk-Yong;Lee, Seung-Yup;Bae, Min-Ji;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.683-691
    • /
    • 2014
  • Significance of SAR(Synthetic Aperture Radar) satellite regadless of weather have grown for Earth observation. According to the cost-effective trend in satellite development, SAR antenna is actively studied. It's a competitive candidate to use deployable SAR antenna out of CFRP. In this study, variables for an antenna configuration model was researched and evaluated. The design of the antenna was structurally analyzed by FEM(Finite Element Model). Tool-kit was developed for modifying the SAR antenna model easily in accordance with system requirement change. In the tool-kit, antenna configuration design and error analysis of the antenna surface could be achieved. And compatibility of tool-kit results to CST, a RF analysis program, was confirmed.

Analysis of Radio Frequency (RF) Characteristics and Effectiveness according to the Number of Gores of Mesh Antenna (그물형 안테나의 고어 개수에 따른 Radio Frequency (RF) 특성 분석)

  • Kim, Jin-Hyuk;Lee, Si-A;Park, Tae-Yong;Choi, Han-Sol;Kim, Hongrae;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.364-374
    • /
    • 2021
  • This research discusses the change in radio frequency (RF) characteristics according to the number of Gores on the deployable mesh antennas for potential micro-satellite applications. The deployable type of lightweight mesh antenna can be used for various space missions such as communication/SAR/ SIGINT. In order to implement an ideal curvature of antenna surface, sufficient number of antenna rib structures are required. However, the increase in antenna ribs affects various design factors of the antenna system, especially total system mass, complexity of deployable mechanism and reliability. In this paper, the proper number of ribs for the mesh antenna were derived by comparison of electro-magnetic (EM) simulation results of example of antenna model in accordance with the various number of ribs.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.

Effects on Performance of Deployable Solid Antenna for Panel Misalignment (패널오차에 의한 전개형 솔리드 안테나 성능 영향)

  • Lee, Ji-Yong;Lee, Kyo-Il;Yoon, Seong-Sik;Lee, Taek-Kyung;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.603-609
    • /
    • 2017
  • In the deployable solid surface antennas, the effects on the performances of antenna due to the structural errors that occur during the deployment are analyzed. The deployable solid surface antennas employed in a satellite are launched in folded configuration and those are deployed in the space environment, and the effects on the antenna performance are calculated depending on the type of surface errors. When the deviation error occurs in one panel, the degradation of performance appears in the side where the incomplete deployment of panel occurs. By assuming that the panel error distribution is in cosine function, the effect of errors are calculated and analyzed with regard to the types and the magnitude of the error. If the antena panel error is uniform, the gain is reduced and pattern is symmetric. For the panel error of cosine 1 or 3 cycle, the main lobe tilts while the pattern is symmetric and the gain reduces for 2 or 4 cycle error.

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.

Analysis of Faceted-Reflector Antenna (각면 반사판 안테나의 해석)

  • Kwak, Chang-Soo;Uhm, Man-Seok;Yom, In-Bok
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Due to big demand for satellite and communication service using personal handheld terminals, demand for satellites with huge antennas is increasing correspondingly. While such large antennas are realized by various types of deployable antennas, the reflecting surface is made by many facets irrespective of deploying mechanisms. In order to analyze the faceted-reflector more accurately, an existing ray-tracing method is improved. The algorithm allows the rays to cross each other, which is the main characteristic of the faceted-reflector, and takes unevenness of amplitude and phase over the aperture plane into consideration. For the study of the effect of facet configuration, facet generating algorithm is devised. From the analysis algorithm and the facet-generating algorithm, it has been found that the number of facets in a radial direction affects both directivity and sidelobe level. On the other hand, the number of facets in a circumferential direction affects sidelobe level only.