• Title/Summary/Keyword: Depletion analysis

Search Result 495, Processing Time 0.038 seconds

Ukgan-san plus Citri Pericarpium and Pinelliae Rhizoma Protects Hepatocytes from Arachidonic Acid and Iron-mediated Oxidative Stress (아라키돈산과 철 유도성 산화적 스트레스에 대한 억간산가진피반하(抑肝散加陳皮半夏)의 간세포 보호 효능)

  • Ye Lim Kim;Hyo Jeong Jin;Sang Mi Park;Kyung Hwan Jegal;Chang Hyun Song;Kyung Soon Kim;Sung Hui Byun;Sang Chan Kim
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.265-281
    • /
    • 2023
  • Objectives : Ukgan-san plus Citri Pericarpium and Pinelliae Rhizoma (UCP) is used as a traditional herbal formula in Korea and Japan for treatment of fever, fever-induced convulsions, and liver dysfunction and so on. In this study, we investigated the cytoprotective effect and underlying mechanism of UCP against oxidative stress induced by cotreatment of arachidonic acid (AA) and iron. Methods : To evaluate the hepatoprotective effects of UCP against AA + iron-induced oxidative stress in HepG2 cell, cell viability and changes on apoptosis-related proteins were assessed by MTT and immunoblot analyses. The changes in intracellular reactive oxygen species (ROS), glutathione (GSH), and mitochondrial membrane permeability (MMP) were investigated against to the oxidative stress. Furthermore, to verify underlying molecular mechanism, NF-E2-related factor 2 (Nrf2) and its downstream target genes were examined by immunoblot analysis. Results : Treatment of UCP increased the cell viability and altered the expression levels of apoptosis-related proteins such as PARP, caspase-9, caspase-3, Bcl-2. UCP also inhibited the GSH depletion, excessive ROS production and mitochondrial dysfunction induced by AA + iron. In addition, the Nrf2 and the Nrf2 target genes activation were increased by UCP. Conclusions : These results indicated that UCP has the ability to protect against oxidative stress-induced hepatocyte damage, which may be mediated with Nrf2 pathway.

Blockchain and AI-based big data processing techniques for sustainable agricultural environments (지속가능한 농업 환경을 위한 블록체인과 AI 기반 빅 데이터 처리 기법)

  • Yoon-Su Jeong
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.17-22
    • /
    • 2024
  • Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.

The Effect of Life Style on Eco-Friendly Clothing Practices and Efficacy in Middle School Students (중학생의 라이프스타일이 친환경적인 의생활 실천 및 효능감에 미치는 영향)

  • Kim, Yunhwa
    • Journal of Korean Home Economics Education Association
    • /
    • v.27 no.4
    • /
    • pp.141-154
    • /
    • 2015
  • The world has been demanding a green growing world in order to solve serious environmental pollution and resource depletion. This study aims to identify life style factors that drive eco-friendly clothing practices and efficacy in middle school students. Data was collected from 215 middle school students in Daegu, using a self-administered questionnaire in December 2013. Statistical analyses to determine frequency, average, ANOVA, factor analysis, reliability analysis, and regression analysis were performed using SPSS 21 program. The results of factor analysis indicated that eco-friendly clothing practices were classified into purchasing and management, reuse, washing, and recycle, and eco-friendly clothing practices efficacy was sub-grouped into practice confidence, purchasing and management efficacy, and washing and sharing efficacy, and life style consisted of fashion pursuit, environment pursuit, planned purchasing, and economy. Eco-friendly clothing practices and efficacy were significant differences in sex and grade (p<0.05). Eco-friendly clothing practices were significantly affected by the factors of environment pursuit, planned purchasing, economy of life style, and the factors of practice confidence, purchasing and management efficacy, and washing and sharing efficacy of eco-friendly clothing practices efficacy (p<0.05). The planned purchasing factor of life style significantly affected all the factors of eco-friendly clothing practices efficacy. This study suggests that eco-friendly clothing practices education program could account for the life style factors such as fashion pursuit, environment pursuit, planned purchasing, and economy with gender and grade to be effective for middle school students.

Determination of Optimum Batch Size and Fuel Enrichment for OPR1000 NPP Based on Nuclear Fuel Cycle Cost Analysis (OPR1000 발전소의 핵연료 주기비분석을 통한 최적 배취 크기와 핵연료 농축도 결정)

  • Cho, Sung Ju;Hah, Chang Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.256-262
    • /
    • 2014
  • Cycle length of domestic nuclear power plants is determined by the demand-supply plan of utility company. The target cycle length is achieved by adjusting the number of feed fuel assembly and fuel enrichment. Traditionally, utility company first select the number of feed fuel assembly and then find out the fuel enrichment to achieve the special cycle length. But it is difficult to find out if this method is most economical than any other combinations of the enrichment and batch size satisfying the same cycle length. In this paper, core depletion calculation is performed to find out the optimum combination of the enrichment and batch size for given target cycle length in terms of fuel cycle cost using commercial core design code; CASMO/MASTER code. To minimize the uncertainty resulting from transition core analysis, levelized fuel cycle cost analysis was applied to the equilibrium cycle core in order to determine the optimum combination. The sensitivity study of discount rate was also carried out to analyze the levelized fuel cycle cost applicable to countries with different discount rates. From the levelized fuel cycle cost analysis results, the combination with smaller batch size and higher fuel enrichment becomes more economical as the discount rate becomes lower. On the other hand, the combination with higher batch size and lower fuel enrichment becomes more economical as the discount rate becomes higher.

The Methodology for Extraction of Geochemical Anomalies, Using Regression Formula: an Example from a Granitic Body in Gyeonggi Province (회귀 수식을 이용한 지구화학적 이상분포지역 도출기법: 경기도화강암의 예)

  • 황상기;신성천;염승준;문상원
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.137-147
    • /
    • 2002
  • Natural geological and environmental processes reflect to element abundances in geological materials on the surface. This study aims to elucidate a possibility of geostatistical application to differentiate geochemical anomalies affected by anthropogenic and geogenic factors. A regional geochemical map was produced using 'inverse distance weight interpolation' method for analytical results of stream sediments «150 11m) which were collected from 2,290 first- to second-order streams over the whole Gyeonggi Province. The Jurassic granitic batholith in the southeastern province was selected as a target for the geostatistical examination. Factor analysis was conducted using 22 elements for stream sediments from 445 drainage basins over the granitic body. Co, Cr, Sc, MgO, Fe$_{2}$O$_{3}$, V, and Ni were grouped with high correlation coefficients and the depletion of the components may reflect the whole-rock chemistry of the granite. Regression analysis was done using Co, Cr, and Sc as dependent variables and other six components as independent variables, and the results were drawn as maps. The maps acquired generally show quite similar distribution patterns with those of concentrations of each variable. The similarity in the spatial patterns between the two maps indicates that the application of regression statistics can be valid for the interpretation of regional geochemical data. However, some components show local discrepancies which may be influenced by secondary factors regardless of the basement lithology. The regression analysis may be effective in extracting local geochemical anomalies which may reflect rather anthropogenic pollutions than geogenic influences.

Floating Photovoltaic Plant Location Analysis using GIS (GIS를 활용한 수상 태양광 발전소 입지 분석)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Global consumption of fossil fuels continues to increase. As developing countries use fossil fuel as much as the existing fossil fuel using countries, the total amount of fossil fuel consumed has risen. The finite fossil energy depletion insecurity have become serious. In addition, fossil energy is caused by environmental pollution, economic and social problems remain in assignments that need to be addressed. Although solar power is clean and has many benefits, there are several problems in the process of installing a solar power plant. To solve these problems, floating photovoltaic plants has emerged as an alternative. This floating photovoltaic plants location analysis has not been made yet. In this study, the conditions of the floating photovoltaic plants location is analyzed with the Analytic Hierarchy Process using the terrain and climate factors. The score is assigned to the attribute information of each factor by the classification table. After multiplied by the weight the result is analyzed by visualization of the score. As the result, the score of the northen part of Gyeongsangbuk-do province is higher than the southern part of Gyeongsangbuk-do province. Especially Andongho lake in Andong City and the reservoir in Yeongyang-Gun are extracted as the optimal location. The score of the river boundary is low not the center of the river stream. It is expected that this study would be a more accurate floating solar power plant location analysis.

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

The Influence of Fat-Free Mass to Maximum Exercise Performance in Patients with Chronic Obstructive Pulmonary Disease (만성폐쇄성폐질환에서 제지방량이 최대운동능력에 미치는 영향)

  • Mun, Yeung Chul;Park, Hye Jung;Shin, Kyeong Cheol;Chung, Jin Hong;Lee, Kwan Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.4
    • /
    • pp.346-354
    • /
    • 2002
  • Background : Dyspnea and a limitation in exercise performance are important cause of disability in patients with chronic obstructive pulmonary disease(COPD). A depleted nutritional state is a common problem in patients with a severe degree of chronic airflow limitation. This study was carried out to assess the factors determining the maximum exercise capacity in patients with COPD. Methods : The resting pulmonary function, nutritional status, and maximum exercise performance was assessed in 83 stable patients with moderate to severe COPD. The nutritional status was evaluated by bioelectrical impedance analysis. Maximum exercise performance was evaluated by maximum oxygen uptake($VO_2max$). Results : Among the 83 patients, 59% were characterized by nutritional depletion. In the depleted group, a significantly lower peak expiratory flow rate(p<0.05), Kco(p<0.01) and maximum inspiratory pressure(p<0.05), but a significantly higher airway resistance(p<0.05) was observed. The maximum oxygen uptake and the peak oxygen pulse were lower in the depleted group. The $VO_2max$ correlated with some of the measures of the body composition : fat-free mass(FFM), fat mass(FM), body mass index(BMI), intracellular water index(ICW index), and pulmonary function : forced vital capacity(FVC), forced inspiratory vital capacity(FIVC), diffusion capacity(DLCO) : or maximum respiratory pressure : maximum inspiratory pressure(PImax), maximum expiratory pressure(PEmax). Stepwise regression analysis demonstrated that the FFM, DLCO and FIVC accounted for 68.8% of the variation in the $VO_2max$. Conclusion : The depletion of the FFM is significant factor for predicting the maximum exercise performance in patients with moderate to severe COPD.

Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 5MW급 해상풍력발전시스템의 상부구조물에 대한 동적 응답 해석)

  • Lee, Kangsu;Im, Jongsoon;Lee, Jangyong;Song, Chang Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.239-247
    • /
    • 2013
  • Recently renewable energy such as offshore wind energy takes a higher interest due to the depletion of fossil fuel and the environmental pollution. This paper deals with multi-body dynamics (MBD) analysis technique for offshore wind turbine system considering aerodynamic loads and Thevenin equation used for determination of electric generator torque. Dynamic responses of 5MW offshore wind turbine system are evaluated via the MBD analysis, and the system is the horizontal axis wind turbine (HAWT) which generates electricity from the three blades horizontally installed at upwind direction. The aerodynamic loads acting on the blades are computed by AeroDyn code, which is capable of accommodating a generalized dynamic wake using blade element momentum (BEM) theory. In order that the characteristics of dynamic loads and torques on the main joint parts of offshore wind turbine system are simulated similarly such an actual system, flexible body modeling including the actual structural properties are applied for both blade and tower in the multi-body dynamics model.

Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1 (월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산)

  • Noh, Kyoungho;Hah, Chang Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.21-34
    • /
    • 2015
  • Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.