• 제목/요약/키워드: Department climate

Search Result 4,032, Processing Time 0.029 seconds

Prediction of Spring Flowering Timing in Forested Area in 2023 (산림지역에서의 2023년 봄철 꽃나무 개화시기 예측)

  • Jihee Seo;Sukyung Kim;Hyun Seok Kim;Junghwa Chun;Myoungsoo Won;Keunchang Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.427-435
    • /
    • 2023
  • Changes in flowering time due to weather fluctuations impact plant growth and ecosystem dynamics. Accurate prediction of flowering timing is crucial for effective forest ecosystem management. This study uses a process-based model to predict flowering timing in 2023 for five major tree species in Korean forests. Models are developed based on nine years (2009-2017) of flowering data for Abeliophyllum distichum, Robinia pseudoacacia, Rhododendron schlippenbachii, Rhododendron yedoense f. poukhanense, and Sorbus commixta, distributed across 28 regions in the country, including mountains. Weather data from the Automatic Mountain Meteorology Observation System (AMOS) and the Korea Meteorological Administration (KMA) are utilized as inputs for the models. The Single Triangle Degree Days (STDD) and Growing Degree Days (GDD) models, known for their superior performance, are employed to predict flowering dates. Daily temperature readings at a 1 km spatial resolution are obtained by merging AMOS and KMA data. To improve prediction accuracy nationwide, random forest machine learning is used to generate region-specific correction coefficients. Applying these coefficients results in minimal prediction errors, particularly for Abeliophyllum distichum, Robinia pseudoacacia, and Rhododendron schlippenbachii, with root mean square errors (RMSEs) of 1.2, 0.6, and 1.2 days, respectively. Model performance is evaluated using ten random sampling tests per species, selecting the model with the highest R2. The models with applied correction coefficients achieve R2 values ranging from 0.07 to 0.7, except for Sorbus commixta, and exhibit a final explanatory power of 0.75-0.9. This study provides valuable insights into seasonal changes in plant phenology, aiding in identifying honey harvesting seasons affected by abnormal weather conditions, such as those of Robinia pseudoacacia. Detailed information on flowering timing for various plant species and regions enhances understanding of the climate-plant phenology relationship.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

Long-term Predictability for El Nino/La Nina using PNU/CME CGCM (PNU/CME CGCM을 이용한 엘니뇨/라니냐 장기 예측성 연구)

  • Jeong, Hye-In;Ahn, Joong-Bae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.170-177
    • /
    • 2007
  • In this study, the long-term predictability of El Nino and La Nina events of Pusan National University Coupled General Circulation Model(PNU/CME CGCM) developed from a Research and Development Grant funded by Korea Meteorology Administration(KMA) was examined in terms of the correlation coefficients of the sea surface temperature between the model and observation and skill scores at the tropical Pacific. For the purpose, long-term global climate was hindcasted using PNU/CME CGCM for 12 months starting from April, July, October and January(APR RUN, JUL RUN, OCT RUN and JAN RUN, respectively) of each and every years between 1979 and 2004. Each 12-month hindcast consisted of 5 ensemble members. Relatively high correlation was maintained throughout the 12-month lead hindcasts at the equatorial Pacific for the four RUNs starting at different months. It is found that the predictability of our CGCM in forecasting equatorial SST anomalies is more pronounced within 6-month of lead time, in particular. For the assessment of model capability in predicting El Nino and La Nina, various skill scores such as Hit rates and False Alarm rate are calculated. According to the results, PNU/CME CGCM has a good predictability in forecasting warm and cold events, in spite of relatively poor capability in predicting normal state of equatorial Pacific. The predictability of our CGCM was also compared with those of other CGCMs participating DEMETER project. The comparative analysis also illustrated that our CGCM has reasonable long-term predictability comparable to the DEMETER participating CGCMs. As a conclusion, PNU/CME CGCM can predict El Nino and La Nina events at least 12 months ahead in terms of NIino 3.4 SST anomaly, showing much better predictability within 6-month of leading time.

Impact of East Asian Summer Atmospheric Warming on PM2.5 Aerosols (동아시아 지역의 여름철 온난화가 PM2.5 에어로졸에 미치는 영향)

  • So-Jeong Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study analyzed the effect of warming on PM2.5 aerosol production in mid-latitude East Asia during June 2020 using PM2.5 aerosol anomalies, which were identified by incorporating meteorological and climate data into the Weather Research Forecasting model coupled with Chemistry (WRF-Chem) model. The decadal temperature change trend over a 30-year period (1991-2020) in East Asia showed that recent warming has been greater in summer than in winter. Summer warming in East Asia generated low and high pressure in the lower and upper troposphere, respectively, over China. The boundary between the lower tropospheric low and upper tropospheric high pressure sloped along the terrain from the Tibetan Plateau to Korea. The eastern China, Yellow Sea, and Korean regions experienced a convergence of warm and humid southwesterly airflows originating from the East China Sea with the development of a northwesterly Pacific high pressure. In June 2020, the highest temperatures were observed since 1973 in Korea. Meanwhile, enhanced warming in East Asia increased the production of PM2.5 aerosols that travelled long distances from eastern China to Korea. PM2.5 anomalies, which were derived solely by inputting meteorological and climatic data (1991-2020) into the WRF-Chem model and excluding emission variations, showed a positive distribution extending from eastern China to South Korea across the Yellow Sea as well as over the Pacific Northwest. Thus, the contribution of warming to PM2.5 aerosols in East Asia during June 2020 was more than 50%. In particular, PM2.5 aerosols were transported from eastern China to Korea through the Yellow Sea, where the warm and humid southwesterly airflows implied wet scavenging of sulfate but promoted nitrate production.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

The change of designation and release of Hapcheon (Gyeongsangnam-do) Swan Sanctuary as Natural Monument (천연기념물 합천 백조도래지의 지정과 해제과정)

  • SIM Keunjeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.162-178
    • /
    • 2024
  • Swans are representative migratory birds that spend winter in East Asia, and have long been considered rare birds. In particular, they were regarded as king of Japan. The process of designating a natural monument in Hapcheon Swan Sanctuary is an interesting story. In this study, the designation and release process of Hapcheon Swan Sancturay ((Bakgok-ji, Yongju-myeon 龍州面 朴谷池), (Jeongyang-ji, Daeyang-myeon 大陽面 正陽池), Gaho, Cheongdeok-myeon 淸德面 嘉湖)) Natural Monument, was examined. These places were designated as a natural monument on August 27, 1934, during the Japanese colonial period, and was lifted on August 14, 1973, after the Cultural Protection Act was enacted after liberation. From the beginning of the new year in 1929, the Japanese Government-General of Korea (朝鮮總督府) decided to capture swans alive to give to the king of Japan. An official of the Japanese Government-General of Korea (統監) decided to offer swans to the king during his New Year's greeting visit. The department in charge of capturing swans was the Gyeongsangnam-do Provincial Police Department, and the execution was the police station of each county (郡). The reason is believed to be that it is easy to forcibly mobilize, control, or urge people, and the capture activity had to be completed as soon as possible. A total of three swans were captured in Hapcheon-gun from January 12 to 14, 1929. At that time, various newspapers published related information. Based on these facts and experiences, it is estimated that the Hapcheon area was selected when designating a natural monument in 1934. Hapcheon Swan Sancturay, Natural Monument lost its function due to excessive human interference of various developments, illegal capture, and use of poison to catch swans. Their number has also significantly decreased. It was thus removed from the natural monument in 1973. One of the three swan sanctuaries (Gaho 嘉湖) has been completely reclaimed, one (Bakgok-ji 朴谷池) has almost no migratory birds due to the conversion of wetlands, and one (Jeongyang-ji 正陽池) has swans flying back. In the case of Jeongyangji (正陽池), It is an encouraging sign that many swans fly as the surrounding environment and growing conditions change. This phenomenon is interpreted to mean that nature and climate are recovering and healing.

Community Distribution on Mountain Forest Vegetation of the Gyebangsan Area in the Odaesan National Park, Korea (오대산 국립공원 계방산 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Yun, Chil-Sun;Lim, Jin-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.135-145
    • /
    • 2014
  • The mountain forest vegetation of Gyebangsan (1,577 m) in Odaesan National Park is classified into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, plantation forest, and other vegetation which includes Actinidia argute community and agricultural land. As for the number of communities distributed in the each forest vegetation which were categorized by the physiognomy classification, deciduous broad-leaved forest had 33 communities, mountain valley forest 41 communities, coniferous forest 8 communities, subalpine coniferous forest 4 communities, subalpine deciduous forest 2 communities, plantation forest 6 communities and other vegetation 4 communities. Regarding the distribution rate of communities in the vegetation, in the deciduous broad-leaved forest. Quercus mongolica community accounted for 80.226% with $30,909,942.967m^2$, followed by Quercus variabilis community of 2.771% with $1,067,479.335m^2$. 55.463% of deciduous broad-leaved forest in the Gyebangsan had Quercus mongolica as a dominant or second dominant species. In the mountain valley forest, Fraxinus rhynchophylla - Juglans mandshurica community accounted for 10.955%. And there were ten mixed communities having Fraxinus rhynchophylla and upper layer at a similar level of coverage, taking up 32.776%. In the coniferous forest, Pinus densiflora and the community living with Pinus densiflora accounted for 100%, showing that the coniferous forest has the community with Pinus densiflora as a dominant species at upper layer. For other vegetation, subalpine coniferous forest had a total of four communities including Abies holophylla - Quercus mongolica community, and accounted for 4.980% of vegetation area of Odaesan National Park. Two communities including Betula ermani - Cornus controversa community were found in the subalpine deciduous forest, taking up 0.006% of total vegetation area of Odaesan National Park. Regarding plantation forest, Larix leptolepis was planted the most with 51.652%, followed by Betula platyphylla var. japonica with 38.975%, and Pinus koraiensis with 7.969%. These three species combined accounted for 98.565%. In conclusion, the forest vegetation found in the Gyebangsan of Odaesan National Park has Quercus mongolica as a dominant species at the top layer. A lot of other communities related with this species are expected to be quickly replaced due to vegetation succession and climatic causes. Therefore, Quercus mongolica is expected to become the main species in the deciduous broad-leaved forest, Fraxinus rhynchophylla, Juglans mandshurica and Fraxinus mandshurica in the mountain valley forest. Around the border line between deciduous broad-leaved forest and mountain valley forest, highly humid valley area is expected to be quickly taken up by Cornus controversa and Fraxinus mandshurica, and the slope area by Quercus mongolica. However, in the subalpine coniferous forest, the distribution rate of deciduous broad-leaved trees is expected to increase due to climate warming.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

The History of the Development of Meteorological Related Organizations with the 60th Anniversary of the Korean Meteorological Society - Universities, Korea Meteorological Administration, ROK Air Force Weather Group, and Korea Meteorological Industry Association - (60주년 (사)한국기상학회와 함께한 유관기관의 발전사 - 대학, 기상청, 공군기상단, 한국기상산업협회 -)

  • Jae-Cheol Nam;Myoung-Seok Suh;Eun-Jeong Lee;Jae-Don Hwang;Jun-Young Kwak;Seong-Hyen Ryu;Seung Jun Oh
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.275-295
    • /
    • 2023
  • In Korea, there are four institutions related to atmospheric science: the university's atmospheric science-related department, the Korea Meteorological Administration (KMA), the ROK Air Force Weather Group, and the Meteorological Industry Association. These four institutions have developed while maintaining a deep cooperative relationship with the Korea Meteorological Society (KMS) for the past 60 years. At the university, 6,986 bachelors, 1,595 masters, and 505 doctors, who are experts in meteorology and climate, have been accredited by 2022 at 7 universities related to atmospheric science. The KMA is carrying out national meteorological tasks to protect people's lives and property and foster the meteorological industry. The ROK Air Force Weather Group is in charge of military meteorological work, and is building an artificial intelligence and space weather support system through cooperation with universities, the KMA, and the KMS. Although the Meteorological Industry Association has a short history, its members, sales, and the number of employees are steadily increasing. The KMS greatly contributed to raising the national meteorological service to the level of advanced countries by supporting the development of universities, the KMA, the Air Force Meteorological Agency, and the Meteorological Industry Association.