• Title/Summary/Keyword: Department Recommendation

Search Result 1,094, Processing Time 0.027 seconds

Empirical Comparison of the Effects of Online and Offline Recommendation Duration on Purchasing Decisions: Case of Korea Food E-commerce Company

  • Qinglong Li;Jaeho Jeong;Dongeon Kim;Xinzhe Li;Ilyoung Choi;Jaekyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.226-247
    • /
    • 2024
  • Most studies on recommender systems to evaluate recommendation performances focus on offline evaluation methods utilizing past customer transaction records. However, evaluating recommendation performance through real-world stimulation becomes challenging. Moreover, such methods cannot evaluate the duration of the recommendation effect. This study measures the personalized recommendation (stimulus) effect when the product recommendation to customers leads to actual purchases and evaluates the duration of the stimulus personalized recommendation effect leading to purchases. The results revealed a 4.58% improvement in recommendation performance in the online environment compared with that in the offline environment. Furthermore, there is little difference in recommendation performance in offline experiments by period, whereas the recommendation performance declines with time in online experiments.

An Intelligent Recommendation Service System for Offering Halal Food (IRSH) Based on Dynamic Profiles

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.260-270
    • /
    • 2019
  • As the growth of developing Islamic countries, Muslims are into the world. The most important thing for Muslims to purchase food, ingredient, cosmetics and other products are whether they were certified as 'Halal'. With the increasing number of Muslim tourists and residents in Korea, Halal restaurants and markets are on the rise. However, the service that provides information on Halal restaurants and markets in Korea is very limited. Especially, the application of recommendation system technology is effective to provide Halal restaurant information to users efficiently. The profiling of Halal restaurant information should be preceded by design of recommendation system, and design of recommendation algorithm is most important part in designing recommendation system. In this paper, an Intelligent Recommendation Service system for offering Halal food (IRSH) based on dynamic profiles was proposed. The proposed system recommend a customized Halal restaurant, and proposed recommendation algorithm uses hybrid filtering which is combined by content-based filtering, collaborative filtering and location-based filtering. The proposed algorithm combines several filtering techniques in order to improve the accuracy of recommendation by complementing the various problems of each filtering. The experiment of performance evaluation for comparing with existed restaurant recommendation system was proceeded, and result that proposed IRSH increase recommendation accuracy using Halal contents was deducted.

A Personalized Recommendation Procedure for E-Commerce

  • Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Woo-Ju;Kim, Je-Ran;Suh, Ji-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.192-197
    • /
    • 2001
  • A recommendation system tracks past actions of a group of users to make a recommendation to individual members of the group. The computer-mediated marketing and commerce have grown rapidly nowadays so the concerns about various recommendation procedures are increasing. We introduce a recommendation methodology by which e-commerce sites suggest new products of services to their customers. The suggested methodology is based on web log analysis, product taxonomy, and association rule mining. A product recommendation system is developed based on our suggested methodology and applied to a Korean internet shopping mall. The validity of our recommendation system is discussed with the analysis of a real internet shopping mall case.

  • PDF

Quality Indicator Based Recommendation System of the National Assembly Members for Political Sponsors (품질지표기반 정치 후원금 지원을 위한 국회의원 추천시스템 연구)

  • Jung, Hyun Woo;Yoon, Hyung Jun;Lee, See Eun;Park, Sol Hee;Sohn, So Young
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: During 2015-2019, the average amount of political donation to the national assembly members in Korea was 1,000 won per person. Despite its benefits such as receiving tax credits, the donation system has not been actively practiced. This paper aims to promote political donations by suggesting a recommendation system of national assembly members by analysing the bills they proposed. Methods: In this paper, we propose a recommendation system based on two aspects: how similar the newly proposed or ammended bills are to the sponsors' interest (similarity index) and how much effort national assembly members put into those bills (intensity index). More than 25,000 bills were used to measure the recommendation quality index consisted with both the similarity and the intensity indices. Word2vec was used to calculate the similarity index of the bills proposed by the national assembly member to the sponsor's interest. The intensity index is calculated by diving the number of newly proposed or entirely revised bills with the number of senators who took part in those bills. Subsequently, we multiply the similarity index by the intensity index to obtain the recommendation quality index that can assist sponsors to identify potential assembly members for their donation. Results: We apply the proposed recommendation system to personas for illustration. The recommendation system showed an average f1 score about 0.69. The analysis results provide insights in recommendation for donation. Conclusion: n this study, the recommendation system was proposed to promote a political donation for national assembly members by creating the recommendation quality index based on the similarity and the intensity indices. We expect that the system presented in this paper will lower user barriers to political information, thereby boosting political sponsorship and increasing political participation.

A Study on the effect of product recommendation system on customer satisfaction: focused on the online shopping mall

  • CHO, Ba-Da;POTLURI, Rajasekhara Mouly;YOUN, Myoung-Kil
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.2
    • /
    • pp.17-23
    • /
    • 2020
  • Purpose: The purpose of this study is to understand the effect of the unique product recommendation system on customer satisfaction. Research design, data and methodology: The survey method used the self-recording way in which the respondents selected for the study and distributed 300 questionnaires, and with due personal care, researchers collected all the distributed questionnaires. Results: The result implies that the characteristics of the product recommendation system should be more secure and developed. Conclusions: The aspects of the product recommendation system were selected as factors of price fairness, accuracy, and quality through previous studies, and the empirical analysis of the effect of the characteristics of the product recommendation system on customer satisfaction was summarized as follows. Among the attributes of the product recommendation system, the attributes of price fairness, accuracy, and quality affect customer satisfaction. Among them, the beta value of quality was the highest, and the effect of quality was the largest among the three factors. Based on the results of the study, the implications for the characteristics of the product recommendation system are summarized as follows. The aspects of the product recommendation system have a positive effect on customer satisfaction, so it is necessary to fill the needs of consumers based on the survey focused on quality

A Research on TF-IDF-based Patent Recommendation Algorithm using Technology Transfer Data (기술이전 데이터를 활용한 TF-IDF기반 특허추천 알고리즘 연구)

  • Junki Kim;Joonsoo Bae;Yeongheon Song;Byungho Jeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.78-88
    • /
    • 2023
  • The increasing number of technology transfers from public research institutes in Korea has led to a growing demand for patent recommendation platforms for SMEs. This is because selecting the right technology for commercialization is a critical factor in business success. This study developed a patent recommendation system that uses technology transfer data from the past 10 years to recommend patents that are suitable for SMEs. The system was developed in three stages. First, an item-based collaborative filtering system was developed to recommend patents based on the similarities between the patents that SMEs have previously transferred. Next, a content-based recommendation system based on TF-IDF was developed to analyze patent names and recommend patents with high similarity. Finally, a hybrid system was developed that combines the strengths of both recommendation systems. The experimental results showed that the hybrid system was able to recommend patents that were both similar and relevant to the SMEs' interests. This suggests that the system can be a valuable tool for SMEs that are looking to acquire new technologies.

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.

Effect of Store Personality and Service Quality on Department Store Revisiting Intention and Recommendation Intention (백화점의 점포 개성과 서비스 품질이 재방문의도와 추천의도에 미치는 영향)

  • Lee, Ji-Yeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.4
    • /
    • pp.43-61
    • /
    • 2012
  • This research aims to examine the impact of store personality and service quality on the customers' intention of revisiting the department store and their intention of recommendation to others. The participants were women in their 20s to 50s with experiences of purchasing apparel from major department stores. A total of 324 survey responses were used for the final analysis. The data were analyzed using factors analysis, reliability analysis, and multiple regression analysis with PASW 18.0. The results were as follows. First, the department store personality was composed of 3 factors; prestige, passion, sincerity. Service quality factors were defined as tangibility, responsiveness, and empathy. Second, the three dimensions of brand personality-prestige, passion and sincerity turned out to be influential factors affecting the customers' revisiting intention and recommendation intention. Also, tangibility and responsiveness of service quality factors had a significant influence on their revisiting intention, whereas tangibility, responsiveness and empathy factors had a significant influence on their recommendation intention. Third, the sub-dimensions of store personality and service quality had a different influence on the customers' revisiting intention and recommendation intention according to the department store brand.

  • PDF

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Effect of the quality of gochujang on purchasing and recommendation intentions

  • Han, A Reum;Jo, A Ra;Jang, Dong Heon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.283-295
    • /
    • 2017
  • This study analyzed the effect of the intrinsic and extrinsic attributes of gochujang, Korean red chili paste, on purchasing intention and recommendation intention for consumption. Survey participants were female, married, aged 30 - 39 years, and highly educated with graduation from a university. Most participants purchased gochujang 1 - 2 times per year, most commonly at a shopping mall, and acquired information on the gochujang product from an advertisement or sponsored TV shows. For the factor analysis, five variables for intrinsic quality were considered: namely, healthiness, economics, convenience, diversity, and sense, whereas three variables were considered for extrinsic quality: trust, external appearance, and image. The factor analysis also confirmed the correlation between the validity and the reliability of the purchasing and recommendation intentions. The effect of intrinsic quality of gochujang on purchasing and recommendation intentions was tested through a multiple regression analysis. The purchase intention was most significantly affected by healthiness, cost, and convenience. On the other hand, the recommendation intention was most significantly affected by the diversity and, to a lesser degree, by the healthiness of the product. Among the extrinsic qualities, trust of consumers and the product appearance had a significant effect on purchasing intention. Recommendation intention was significantly affected by the appearance. And trust significantly influenced the recommendation. Therefore, a concrete and systematic marketing approach considering these factors.