• Title/Summary/Keyword: Deoxyhemoglobin

Search Result 12, Processing Time 0.021 seconds

A New Method for Determining the Absorption Coefficient of Oxy- and Deoxyhemoglobin by use of a Thin-fi im Optical Waveguide Sensor (박막광도파로 센서를 이용한 산화 및 환원 혈색소의 새로운 흡광계수 측정법)

  • 강신원
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 1995
  • A simple method for determining the absorption coefficient of oxyhemoglobin and deoxyhemoglobin in human blood is proposed as an application of the complex propagation constant of a guided wave in a thin-film optical waveguide. A serial multichannel sample chamber is constructed on the waveguide to vary the interaction length between the evanescent field and the sample, and the dependence of the sensor response on the interaction length is investigated for the various concentration of two hemoglobins. The sensor response is linearly proportional to the interaction length and the concentration of two hemoglobins. The attenuation constant due to the evanescent field absorption between the samples is experimentally obtained with the designed sensor, and then the absorption coefficient is determined by the proposed method. The absorption coefficients determined by the proposed method fairly well coincided with those obtained by the conventional transmission measurement.

  • PDF

Simultaneous measurements of NIR and electrical signals on rat brain during whisker stimulation (수염 자극 시 대뇌수염피질에서의 혈류변화에 따른 근적외선 신호와 전기신호의 동시측정)

  • Lee, Seung-Deok;Gwon, Gi-Un;Go, Dal-Gwon;Ho, Dong-Su;Kim, Beop-Min;Lee, Hyeon-Ju;Rang, I-Ran;Sin, Hyeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.455-456
    • /
    • 2008
  • 근적외선 분광법(Near-infrared spectroscopy, NIRS)은 대뇌피질에서의 혈류변화(oxy-, deoxyhemoglobin의 농도변화)를 비침습적으로 측정할 수 있는 방법이다. 본 논문에서는 향후 뇌-컴퓨터 접속기술(Brain computer interface)에 적용하기위한 초기 연구단계로, 쥐의 수염을 자극시 활성화되는 대뇌수염피질 영역에서의 혈류변화 및 전기신호를 동시에 측정하고 두 신호의 패턴을 분석한다.

  • PDF

Inhibition of Human Hemoglobin Autoxidaiton by Sodium n-Dodecyl Sulphate

  • Reza, Dayer Mohammad;Ali Akbar, Moosavi-Movahedi;Parviz, Norouzi;Ghourchian, Ghourchian;Hedayat-Olah, Hedayat-Olah;Shahrokh, Safarian
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.364-370
    • /
    • 2002
  • The effect of sodium n-dodecyl sulphate (SDS) on hemoglobin autoxidation was studied in the presence of a 100mM phosphate buffer (pH 7.0) by different methods. These included spectorphotometry, fluorescence technique, cyclic voltametry, differential scanning calorimetry, and densitometry. Spectroscopic studies showed that SDS concentrations up to 1 mM increased deoxy-, decreases oxy-, and had no significant effect on the met- conformation of hemoglobin. Therefore, a SDS concentration up to 1 mM increased the deoxy form of hemoglobin as the folded, compact state and decreases the oxy conformation. The turbidity measurements and differential scanning calorimetry techniques indicated a more stable conformation for hemoglobin in the presence of SDS up to 1mM. Electrochemical studies also confirmed a more difficult oxidation under these conditions. The induction of the deoxy form in the presence of SDS was confirmed by densitometry techniques. The compact structure of deoxyhemoglobin blocks the formation of met-conformation in low SDS concentrations.

Measurement of Blood Oxygen Saturation System and LavVIEW Program Using Broad-band Light Source (광대역 광원을 이용한 혈중 산소포화도의 측정 시스템 및 랩뷰 프로그램)

  • Cui, Jin Shi;Shin, Dong Ho;Song, Chul Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.128-137
    • /
    • 2015
  • Blood oxygen saturation ($SpO_2$) is so important to be called bio-signal of the fifth. The measurement of blood oxygen saturation based on broad-ban light source has advantages of simple testing facility and easy understanding. This paper proposes a LabVIEW program which measures blood oxygen saturation based on broad-band light source. It combines LabVIEW and MATLAB, utilizing different light absorptions of oxyhemoglobin and deoxyhemoglobin in the visual wavelength range of 450nm-750nm to determine blood oxygen saturation. In order to improve accuracy through reducing the impact of hand shaking, the probe is fixed to the motor stage and then move a constant distance between the probe and the sample to be measured. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Hypointensity on Susceptibility-Weighted Images Prior to Signal Change on Diffusion-Weighted Images in a Hyperacute Ischemic Infarction: a Case Study

  • Kim, Dajung;Lee, Hyeonbin;Jung, Jin-Man;Lee, Young Hen;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • Susceptibility-weighted imaging (SWI) is well known for detecting the presence of hemorrhagic transformation, microbleeds and the susceptibility of vessel signs in acute ischemic stroke. But in some cases, it can provide the tissue perfusion state as well. We describe a case of a patient with hyperacute ischemic infarction that had a slightly hypodense, patchy lesion at the left thalamus on the initial SWI, with a left proximal posterior cerebral artery occlusion on a magnetic resonance (MR) angiography and delayed time-to-peak on an MR perfusion performed two hours after symptom onset. No obvious abnormal signals at any intensity were found on the initial diffusion-weighted imaging (DWI). On a follow-up MR image (MRI), an acute ischemic infarction was seen on DWI, which is the same location as the lesion on SWI. The hypointensity on the initial SWI reflects the susceptibility artifact caused by an increased deoxyhemoglobin in the affected tissue and vessels, which reflects the hypoperfusion state due to decreasing arterial flow. It precedes the signal change on DWI that reflects a cytotoxic edema. This case highlights that, in some hyperacute stages of ischemic stroke, hypointensity on an SWI may be a finding before the hyperintensity is seen on a DWI.

Monitoring Differences in Vaginal Hemodynamic and Temperature Response for Sexual Arousal by Different Anesthetic Agents Using an O ptical Probe

  • Jeong, Hyeryun;Seong, Myeongsu;Park, Kwangsung;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 2020
  • The selection of anesthetic agent is important in preclinical studies, since each agent affects the systemic hemodynamics in different ways. For that reason, we hypothesized that different anesthetic agents will result in different vaginal hemodynamic response and temperature during sexual arousal, in an animal model. To validate the hypothesis, animal experiments were performed using female rats with two anesthetic agents widely used in preclinical studies: ketamine and isoflurane. Our previously developed near-infrared-spectroscopy-based probe was used to measure the changes of oxyhemoglobin (OHb), deoxyhemoglobin (RHb), and total hemoglobin (THb) concentrations along with temperature from the animal vaginal wall. As a control, saline was administered to both isoflurane- and ketamine-anesthetized animals, and did not show any significant changes in OHb, RHb, THb, or temperature. However, an administration of apomorphine (APO, 80 ㎍/kg) induced increases of OHb (63 ± 28 μM/DPF), RHb (35 ± 20 μM/DPF), and THb (98 ± 49 μM/DPF) in ketamine-anesthetized animals, while decreases of OHb (52 ± 76 μM/DPF) and THb (38 ± 30 μM/DPF) and an increase of RHb (28 ± 51 μM/DPF) were found in isoflurane-anesthetized animals. The vaginal temperature decreased from the baseline in both ketamine-(0.42℃) and isoflurane-(1.22℃)anesthetized animals. These results confirmed our hypothesis, and suggest that a preclinical study monitoring hemodynamic responses under anesthesia should employ an appropriate anesthetic agent for the study.

Development of a Hybrid fNIRS-EEG System for a Portable Sleep Pattern Monitoring Device (휴대용 수면 패턴 모니터링을 위한 복합 fNIRS-EEG 시스템 개발)

  • Gyoung-Hahn Kim;Seong-Woo Woo;Sung Hun Ha;Jinlong Piao;MD Sahin Sarker;Baejeong Park;Chang-Sei Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.392-403
    • /
    • 2023
  • This study presents a new hybrid fNIRS-EEG system to meet the demand for a lightweight and low-cost sleep pattern monitoring device. For multiple-channel configuration, a six-channel electroencephalogram (EEG) and a functional near-infrared spectroscopy (fNIRS) system with eight photodiodes (PD) and four dual-wavelength LEDs are designed. To enhance the convenience of signal measurement, the device is miniaturized into a patch-like form, enabling simultaneous measurement on the forehead. Due to its fully integrated functionality, the developed system is advantageous for performing sleep stage classification with high-temporal and spatial resolution data. This can be realized by utilizing a two-dimensional (2D) brain activation map based on the concentration changes in oxyhemoglobin and deoxyhemoglobin during sleep stage transitions. For the system verification, the phantom model with known optical properties was tested at first, and then the sleep experiment for a human subject was conducted. The experimental results show that the developed system qualifies as a portable hybrid fNIRS-EEG sleep pattern monitoring device.

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

Susceptibility-Weighted Imaging as a Distinctive Imaging Technique for Providing Complementary Information for Precise Diagnosis of Neurologic Disorder (신경계 질환에 관한 정확한 진단을 위해 다양한 보완 정보를 제공하는 독특한 영상 기법으로서의 자기화율 강조 영상)

  • Byeong-Uk Jeon;In Kyu Yu;Tae Kun Kim;Ha Youn Kim;Seungbae Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.99-115
    • /
    • 2021
  • Various sequences have been developed for MRI to aid in the radiologic diagnosis. Among the various MR sequences, susceptibility-weighted imaging (SWI) is a high-spatial-resolution, three-dimensional gradient-echo MR sequence, which is very sensitive in detecting deoxyhemoglobin, ferritin, hemosiderin, and bone minerals through local magnetic field distortion. In this regard, SWI has been used for the diagnosis and treatment of various neurologic disorders, and the improved image quality has enabled to acquire more useful information for radiologists. Here, we explain the principle of various signals on SWI arising in neurological disorders and provide a retrospective review of many cases of clinically or pathologically proven disease or components with distinctive imaging features of various neurological diseases. Additionally, we outline a short and condensed overview of principles of SWI in relation to neurological disorders and describe various cases with characteristic imaging features on SWI. There are many different types diseases involving the brain parenchyma, and they have distinct SWI features. SWI is an effective imaging tool that provides complementary information for the diagnosis of various diseases.