• Title/Summary/Keyword: Deokjeokdo

Search Result 13, Processing Time 0.017 seconds

A report of 20 unrecorded bacterial species isolated from the coastal area of Korean islands in 2022

  • Hyerim Cho;Yeonjung Lim;Sumin Kim;Hyunyoung Jo;Mirae Kim;Jang-Cheon Cho
    • Journal of Species Research
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2023
  • Bacterial communities inhabiting islands play a vital role in the functioning and formation of a unique, isolated ecosystem. Nevertheless, there has been a lack of systematic research on the indigenous microbiological resources of the islands in Korea. To excavate microbial resources for further studies on the metabolism and biotechnological potential, a standard dilution plating was applied to coastal seawater samples collected from islands along the west coast of the Korean Peninsula, including Deokjeokdo, Baengnyeongdo, and Daebudo in 2022. A total of 2,007 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 20 strains, with ≥98.7% 16S rRNA gene sequence similarity to bacterial species having validly published names but not reported in Korea, were designated as unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, five classes, 12 orders, 17 families, and 18 genera. The unreported species were assigned to Algimonas, Amylibacter, Notoacmeibacter, Roseibium, and Terasakiella of the class Alphaproteobacteria; Alteromonas, Congregibacter, Marinagarivorans, Marinicella, Oceanospirillum, Psychromonas, Thalassotalea, Umboniibacter, and Vibrio of the class Gammaproteobacteria; Lutibacter and Owenweeksia of the class Flavobacteriia; Paenibacillus of the class Bacilli; and Pelagicoccus of the class Opitutae. The taxonomic characteristics of the unreported species, including morphology, biochemistry, and phylogenetic position are provided in detail.

Persistence Analysis of Observed Metocean Data in the Southwest Coast in Korea (서남해안 연안 해양기상 관측자료의 지속시간 특성 분석)

  • Gi-Seop, Lee;Gyung-Sik, Seo;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.303-314
    • /
    • 2022
  • The persistence analysis of marine physical environment factors is a basic analysis that must precede the use of sea areas as an analysis required in the coastal engineering such as downtime and design. In this study, the persistence analysis was implemented for wind speed and significant wave height data from four observation points of Deokjeokdo, Oeyeondo, Geomundo, and Geojedo among the marine meteorological observation buoys of the Korea Meteorological Administration. The persistence time means the consecutive time of observation data beyond specific level. The threshold wind speed and significant wave height were set in the range of 1~15 m/s and the range of 0.25~3.0 m, respectively. Then, the persistence time was extracted. As a result of the analysis, the persistence time of wind speed and significant wave height decreased rapidly as the reference value increased. The median persistence times under the maximum reference thresholds were assessed as a maximum of 5 hours for wind speed and a maximum of 8 hours for significant wave height. When the reference wind speed and significant wave height were 15 m/s and 3 m, respectively, the persistence time that could occur with a 1% probability were 52 and 56 hours. This study can be expanded to all coastal areas in Korea, and it is expected that various engineering applications by performing a persistence analysis of the metocean data.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.