• Title/Summary/Keyword: Deodorization performance

Search Result 30, Processing Time 0.021 seconds

Formation of Dimeric Acids in Soybean Oil in the Deodorizing System (대두유의 탈취과정에서 생성되는 Dimeric Acids)

  • Park, Choul-Soo;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.494-497
    • /
    • 1998
  • Deodorization of soybean oil was carried out at a temperature range of $220{\sim}280^{\circ}C$ for 1 or 2hrs. HPSEC(high performance size exclusion chromatography) method was used for the analysis of dimeric acids in deodorized soybean oil. Dimeric acid moieties were produced through the deodorization at $240{\sim}280^{\circ}C$ for 2 hrs. The amount of dimeric acids produced was found to be in the range of 0.36 to 3.39%. Dimeric acids were not detected under the deodorizing condition of $240^{\circ}C,\;2\;hrs\;or\;250^{\circ}C,\;1\;hr$. The soybean oil deodorized in these conditions had good quality by the color and viscosity tests. The best condition of minimizing the formation of dimeric acids in soybean oils was the deodorizing conditions of $240^{\circ}C,\;2\;hrs\;or\;250^{\circ}C,\;1hr$.

  • PDF

Performance Study on Odor Reduction of Indole/Skatole by Composite

  • Young-Do Kim
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2024
  • This study developed a dry composite module-type deodorization facility with Twisting airflow changes and two forms (catalyst, adsorbent) within one module. Experiments were conducted to evaluate the reduction efficiency of odor substances C8H7N and C9H9N. The device combines UV oxidation using TiO2, catalytic oxidation using MnO2, and adsorption using A/C in five different methods. Data analysis of experimental results utilized the statistical package program Python 3.12. The program applied frequency analysis of odor removal efficiency, one-way ANOVA, and post-hoc tests, with statistical significance determined by p-value to ensure reliability and validity of the measurements. Results indicated that the highest removal efficiency of C8H7N and C9H9N was achieved by the UV+A/C method, suggesting the superior effectiveness and efficiency of the developed device. Combining multiple processes and technologies within one module enhanced odor treatment efficiency compared to using a single method. The device's modularity allows for flexibility in adapting to various sewage treatment scenarios, offering easy maintenance and cost-effective deodorization. This composite reaction module device can apply multiple technologies, such as biofilters, plasma, activated carbon filters, UV-photocatalysis, and electromagnetic-chemical systems. However, this study focused on UV-photocatalysis, catalysts, and activated carbon filters. Ultimately, the research demonstrates the practical applicability of this innovative device in real sewage treatment operations, showing excellent reduction efficiency and effectiveness by integrating UV oxidation, TiO2 photocatalysis, MnO2 catalytic oxidation, and A/C adsorption within a modular system.

Hydration-Setting Property of Slaked Lime and Artificial Zeolite Synthesized with Top Water Sludge (정수슬러지로 합성한 인공제올라이트와 소석회의 수화응결특성)

  • La, Jung-Min;Choi, Duk-Jin;Kim, Min-Gil;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.122-128
    • /
    • 2010
  • On the international provision on prohibition of ocean dumping of waste, tap water sludge has been buried or recycled on th low value added product as landfill. Due to the tap water sludge having high inorganic content, differing from the sewage sludge, it is possible to use as a usable resource by suitable process. We have studied on hydro thermal processing of tap water sludge with phosphoric acid and finally synthesize a artificial zeolite having a deodorization property. To use it as a building material, it has to be solidification. This study is on the properties of artificial zeolite synthsized and solidification properties by various types of solidifier. It is showed that the slaked lime is the best on setting property and its optimum content is 30-60 weight proportion. Solid by solidified by slaked lime has low strength and excellent deodorization performance, so it is possible to use as a functional pannel as gypsum board.

  • PDF

Loess Dyeing on Cotton Fabrics using Silane Coupling Agent (Silane Coupling제를 이용한 면직물의 황토염색)

  • Kim, Seong U;Nam, Seong U;Kim, In Hoe
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.48-48
    • /
    • 2001
  • The effects of silane coupling agent on the performance properties of cotton fabrics treated with loess and its washing durability were investigated. Mean average diameter of loess was 17.88㎛ and main components were SiO₂, Al₂O₃ and Fe₂O₃. By using the cationic agent, the dyeability of cotton fabrics was improved. The washing durability, antibacterial property and deodorization rate were improved and very good emissivities of far infra-red rays were obtained by using the silane coupling agent. And also the mechanical properties of cotton fabrics, such as primary hand values, were improved.

Loess Dyeing on Cotton Fabrics using Silane Coupling Agent (Silane Coupling제를 이용한 면직물의 황토염색)

  • 김성우;남성우;김인회
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.336-345
    • /
    • 2001
  • The effects of silane coupling agent on the performance properties of cotton fabrics treated with loess and its washing durability were investigated. Mean average diameter of loess was $17.88\mu{m}$ and main components were $SiO_2,\;Al_2O_3\;and\;Fe_2O_3$. By using the cationic agent, the dyeability of cotton fabrics was improved. The washing durability, antibacterial property and deodorization rate were improved and very good emissivities of far infra-red rays were obtained by using the silane coupling agent. And also the mechanical properties of cotton fabrics, such as primary hand values, were improved.

  • PDF

A Development of Polyester-based Non-woven Fabric Filter for Air Purifier Treated with Self-actuated Photocatalyst

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • We studied the photocatalytic functionality such as deodorant, antibacterial, fine dust collection efficiency of polyester-based non-woven fabric filter treated with self-actuated photocatalyst. According to UV/visible result, the UV-visible peak of visible-light responsive photocatalyst was found to be red shift at 420 nm sensitive in the visible light region. The deodorizing performance was shown to be reduced more than 80% even without dark conditions. Fine dust particles collection efficiency was shown to be excellent at the size of not only $2.5{\mu}m{\sim}10.0{\mu}m$ but also less than $2.5{\mu}m$. Also antimicrobial and antifungus was shown to be reduced more than 99.9%.

Photocatalyst Effect of Polyester Fabrics Treated with Visible-light Responsive Photocatalyst

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • In this study, we studied the photocatalytic functionality such as deodorant, antibacterial, antistatic of polyester fabrics treated with visible-light responsive photocatalyst. According to UV/visible spectrometry result, the UV-visible peak of visible-light responsive photocatalyst was found to be red shift at 420 nm sensitive in the visible light region. Also, the deodorizing and antimicrobial performance were shown to be retained more than 99% both before washing and even after 25 times washing. According to washing durability of polyester fabrics treated with visible-light responsive photocatalyst, the reduction effects for gas such as ammonia, trimethylamine, formaldehyde and toluene after 25 times washing appeared to be retained as much as before washing. At both before washing and after 25 times washing, antistatic property showed frictional voltage of approximately 250V.

Flow Analysis of Dry-Type Hollowed Adsorption Tower for Treatment of Deodorization (악취처리를 위한 건식 중공 흡착탑에 대한 유동해석)

  • Cho, En-man;Jeong, Won-hoon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.64-70
    • /
    • 2022
  • The aim of this study is to improve the purification efficiency of odor gas by increasing the contact area between an odor gas and adsorbent. To analyze the flow in the adsorption tower, the flow characteristics in the hollow activated carbon-adsorption tower are identified by applying the loss model, which is a porous flow analysis model. The flow characteristics are investigated for pressure loss, velocity distribution, turbulent kinetic energy, and residence time distribution. The results show that the hollow adsorption tower performs better than the solid adsorption tower in terms of pressure loss and performance. The inner diameter of the hollow region inside the adsorption tower is 0.64 m (Di/Do = 0.37). Furthermore, the adsorbent performance is unaffected even when adsorbent stages are installed to replace the adsorbent.

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.

Dyeing and Functional Properties of Cotton-Modal-Chitosan Blended Towel Fabric Dyed with Mugwort Colorants (면-모달-키토산 혼방타월의 쑥에 대한 염색성과 기능성)

  • Kim, Sung-Hee;Choi, Mee-Sung;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.14-22
    • /
    • 2016
  • The objective of this study is to develop eco-friendly, functional towel material utilizing cotton-Modal-chitosan blended(C-M-CH) yarn and natural dyeing with mugwort colorants. Dyeing properties of towels with mugwort colorants were studied by investigating the effect of dyeing conditions including concentration of mugwort colorants, dyeing temperature, and dyeing time, and the effects of mordants on dye uptakes were investigated. The C-M-CH towel showed better dye uptake than 100% cotton towel with mugwort colorants. The shade of towels got darker and red-yellowish tint increased by mordanting. Comparing with 100% cotton towel, the colorfastness of dyed C-M-CH towel was satisfactory showing above 3 grade which is the lowest grade to washing fastness. The antibacterial activity against Staphylococcus aureus and deodorization performance of towels were excellent and improved by dyeing with mugwort colorants. From the results obtained, it is concluded that the cotton-Modal-chitosan blended towel dyed with mugwort colorants can be used practically for an eco-friendly and multi-functional towel materials with excellent absorbance and drying properties.