• 제목/요약/키워드: Dental stem cell

검색결과 145건 처리시간 0.028초

BMP-2에 의한 협부 지방 성체 줄기세포의 골형성 (OSTEOGENESIS BY BMP-2 IN ADULT STEM CELL DERIVED FROM BUCCAL FAT PAD)

  • 김창현;박철헌;이일규;표성운
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권4호
    • /
    • pp.412-418
    • /
    • 2008
  • Bone morphogenetic proteins (BMPs) in combination with stem cells gain more significance for their use in bone tissue engineering. The mesenchymal stem cell can be differentiated into osteoblast by the treatment of BMP. The aim of this study is to characterize the osteogenic differentiation process of adult stem cells derived from buccal fat pad according to BMP-2 within culture media and decide the appropriate concentration of BMP-2 to facilitate osteogenesis. The authors procured the stem cell from buccal fat pad and analyzed for presence of stem cell by flow cytomety against CD-34, CD-105 and STRO-1. The buccal fat derived stem cells (BFDC) were treated by application of the different concentration with BMP-2 of 0, 10, 50, 100 and 200ng/ml, respectively. And their ability to differentiate into osteogenic pathway were checked by alkaline phosphatase(ALP) staining, Alizarin red staining and RT-PCR for osteocalcin(OC) gene expression at 7, 14 and 21day of culture. Flow cytometric analysis and biochemical assays demonstrated that BFDC might be a distinguished stem cells, and mineralization was accompanied in proportion to BMP-2 concentration. However, with 100ng/ml concentration of BMP-2, the BFDC demonstrated most efficient staining pattern of ALP and Alizarin red. The feasibility of the osteogenic differentiation in the group of both 50ng/ml and 200ng/ml of BMP-2 showed similar activity and relatively weaker than that of 100ng/ml. These results suggest that the BMP-2 stimulate osteogenesis by BFDC effectively and that bone induction might be controlled through negative regulatory feedback in higher concentration.

Age-Related Changes of Adult Neural Stem Cells in the MouseHippocampal Dentate Gyrus

  • Jung, Ji-Yeon;Byun, Kang-Ok;Jeong, Yeon-Jin;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.59-64
    • /
    • 2008
  • This study was designed to investigate the changes in the properties of the neuronal setm cells or progenitor cells associated with age-related decline in neurogenesis of the hippocampal dentate gyrus (DG). Active whole cells cycle marker Ki67 (a marker of whole cell cycle)-positive and S phase marker bromodeoxyuridine (BrdU)-positive. Neural stem cells gradually were reduced in the hippocampal subgranular zone (SGZ) in an age-dependant manner after birth (from P1 month to P1 year). The ratio of BrdUpositivecells/Ki67-positive cells was gradually enhanced in an age-dependent manner. The ratio of Ki67-positive cells/accu-mulating BrdU-positive cells at 3 hrs after BrdU injection was injected once a day for consecutive 5 days gradually decreased during ageing. TUNEL- and caspase 3 (apoptotic terminal caspase)-positive cells gradually decreased in the dentate SGZ during ageing and immunohistochemical findings of glial fibrillary acid protein (GFAP) were not changed during ageing. NeuN, a marker of mature neural cells, and BrdU-double positive cells gradually decreased in an age-dependent manner but differentiating ratio and survival rate of cells were not changed at 4 wks after BrdU injection once a day for consecutive 5 days. The number of BrdU-positive cells migrated from the hippocampal SGZ into granular layer and its migration speed was gradually declined during ageing. These results suggest that the adult neurogenesis in the mouse hippocampal DG gradually decrease through reducing proliferation of neural stem cells accompanying with cells cycle change and reduced cells migration rather than changes of differentiation.

The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells

  • Bae, Yoon-Kyung;Kim, Gee-Hye;Lee, Jae Cheoun;Seo, Byoung-Moo;Joo, Kyeung-Min;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • 제40권6호
    • /
    • pp.386-392
    • /
    • 2017
  • Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, ${\alpha}-smooth$ muscle actin, platelet-derived growth factor receptor ${\beta}$, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HUVECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the $SDF-1{\alpha}$ and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the perivascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.

Suppression of DNMTs Accelerates the In Vitro Erythropoietic Differentiation of Human $CD34^+$ Progenitor Cells

  • Kim, Seok-Ho;Yang, Hee-Young;Jeong, Dong-Kee;Lee, Sang-Ryeul;Ryoo, Zae-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • 제31권4호
    • /
    • pp.241-248
    • /
    • 2007
  • Epigenetic modification dependent DNA methyltransferases (DNMTs) play an important role in tissue- and stage-specific gene regulation and normal mammalian development. In this study, we show that DNMTs are expressed at different levels during hematopoietic stem cell (HSC) differentiation to proerythrocytes. DNMT1, DNMT3A, and DNMT3B were highly expressed at day 7 after differentiation. We used specific siRNA as a tool to probe the relationship between the expression of DNMTs and erythropoietic differentiation. When introduced siRNA of DMNT1 and DMNT3b in human $CD34^+$ cells, these more differentiated into erythrocytes. This was confirmed by glycophorin A (GPA) positive cell analysis and globin gene expression. $GPA^+$ cells increased up to $20{\sim}30%$, and ${\gamma}$- and ${\epsilon}$-globin genes increased in siRNA transfected cells. Therefore, our data suggest that suppression of DNA methylation can affect positively differentiation of HSC and may contribute to expression of erythrocyte lineage genes including GPA and globins.

협부지방에서 성체 줄기세포의 분리와 골모 세포로의 분화 (DIFFERENTIATION OF ADULT STEM CELL DERIVED FROM BUCCAL FAT PAD INTO OSTEOBLAST)

  • 표성운;박장우;이일규;김창현
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권6호
    • /
    • pp.524-529
    • /
    • 2006
  • For the repairing of bone defect, autogenous or allogenic bone grafting remains the standard. However, these methods have numerous disadvantages including limited amount, donor site morbidity and spread of diseases. Tissue engineering technique by culturing stem cells may allow for a smart solution for this problem. Adipose tissue contains mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from buccal fat pad and differentiate them into osteoblast and are to examine the bone induction capacity. Buccal fat-derived cells (BFDC) were obtained from human buccal fat pad and cultured. BFDC were analyzed for presence of stem cell by immunofluorescent staining against CD-34, CD-105 and STRO-1. After BFDC were differentiated in osteogenic medium for three passages, their ability to differentiate into osteogenic pathway were checked by alkaline phosphatase (ALP) staining, Alizarin red staining and RT-PCR for osteocalcin (OC) gene expression. Immunofluorescent and biochemical assays demonstrated that BFDC might be a distinguished stem cells and mineralization was accompanied by increased activity or expression of ALP and OC. And calcium phosphate deposition was also detected in their extracelluar matrix. The current study supports the presence of stem cells within the buccal fat pad and the potential implications for human bone tissue engineering for maxillofacial reconstruction.

Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice

  • Seong, Kyung-Joo;Kim, Hyeong-Jun;Cai, Bangrong;Kook, Min-Suk;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.145-153
    • /
    • 2018
  • The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review

  • Sabrina Moreira Paes;Yasmine Mendes Pupo;Bruno Cavalini Cavenago;Thiago Fonseca-Silva;Carolina Carvalho de Oliveira Santos
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.26.1-26.15
    • /
    • 2021
  • Objectives: The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods: This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results: The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions: The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.

가토의 상악동 골이식술시 미분화 간엽 줄기세포의 골형성 효과 (THE EFFECTS OF UNDIFFERENTIATED MESENCHYMAL STEM CELLS ON SINUS BONE GRAFTING IN RABBIT)

  • 오승환;채영원;김범수;여인범;조필귀
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.520-530
    • /
    • 2006
  • Undifferentiated mesencymal stem cells(UMSCs) have been thought to be multipotent cells that can replicate as undifferentiated cells and that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. It can be used to sinus lifting, Guided bone regeneration, other bone graft in dental part. The purpose of this study is to evaluate the effect of mesencymal stem cells on sinus augmentation with autogenous bone, fibrin glue mixture in a rabbit model. 8 New Zealand white rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, undifferentiated mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, The animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, Stem cell group showed integrated graft bone with host bone from sinus wall. At 2 and 4weeks, It showed active newly formed bone and neovascularization. At 8 weeks, lamella bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than autobone without stemcell. there were significant differences in bone volume between 2 and 4 weeks (p<0.05). In summary, the autobone with stem cells had well-formed, newly formed bone and neovasculization, compared with the autobone without stem cells (esp. 2 weeks and 4 weeks) The findings of this experimental study indicate that the use of a mixture of mesenchymal stem cell yielded good results in osteogenesis and bone volume comparable with that achieved by autogenous bone. Therefore, this application of this promising new sinus floor elevation method for implants with tissue engineering technology deserves further study.