• 제목/요약/키워드: Density-functional theory

검색결과 501건 처리시간 0.023초

Quantum chemical investigations on bis(bora)calix[4]arene: a fluorescent fluoride sensor

  • Jin, Jae Hyeok;Lee, Yoon Sup
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.77-88
    • /
    • 2013
  • The computational study on the fluoride ion binding with bis(bora)calix[4]arene has been performed using density functional theory and ONIOM model. The computed structure and fluorescent behavior of bis(bora)calix[4]arene was corresponded to experiment value. The binding energy for fluoride anion is computed to be 28.05kJ/mol in the chloroform solution. We also predicted that this sensing mechanism is only valid for fluoride ion in halogens. By analyzing molecular orbitals, binding with fluoride ion reduces energy differences between HOMO and LUMO, which leads to fluorescent sensing.

  • PDF

Local Structure Study of Liquid Phase Ethylene Glycol and 1,3-propanediol through Density Functional Theory

  • Nam, Seungsoo;Sim, Eunji
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.140-146
    • /
    • 2016
  • Using density functional Theory, we studied local structure of liquid ethylene glycol and 1,3-propanediol. For both liquid, making intramolecular hydrogen bonding is not preferred, because relative energy between with and without intramolecular hydrogen bond is only -1.95kcal/mol, which is far less than intermolecular hydrogen bonding energy, about -7.5kcal/mol. Also, hydrogen bond induce polarization of hydroxyl group and make $2^{nd}$ hydrogen bond more stronger. This effect was small in intramolecular hydrogen bond of ethylene glycol. When considering energy per hydrogen bond, making only one intermolecular hydrogen bond for ethylene glycol pair is energetically favored, while two intermolecular hydrogen bond can be formed in 1,3-propanediol pair.

  • PDF

Theoretical study on electronic properties of deoxyfluorinating sulfur-based reagents

  • Lim, Soobin;Lee, Eunsung
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.51-55
    • /
    • 2016
  • Organofluorine compounds have become increasingly important as pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science. Recent advances on the efficient introduction of fluorine to organic molecules are mainly results of development of transition metal catalysts and fluorination reagents. Among the various fluorination reagents, we have been interested in developing more efficient sulfur-based deoxyfluorinating reagents. Here we report various electronic properties of five popular sulfur-based deoxyfluorinating reagents using density functional theory calculation. We believe that the theoretical study on the reagents will assist the rational design of new deoxyfluorinating reagents.

Synthesis, Characterization and Determination of HOMO-LUMO of the Substituted 1,3,5-Triazine Molecule for the Applications of Organic Electronics

  • Pakkath, Rajeesh;Reddy, Eeda Koti;Kuriakose, Sheena;Saritha, C;Sajith, Ayyiliath M;Karuvalam, Ranjith Pakkath;Haridas, Karickal Raman
    • 대한화학회지
    • /
    • 제63권5호
    • /
    • pp.352-359
    • /
    • 2019
  • The most important parameter of organic molecules for energy harvesting application focuses mainly on their band gap (HOMO-LUMO). In this report, we synthesized differently substituted 1,3,5-triazine based organic molecule which on future processing can be used in organic electronics like solar cells and OLED's. The energy gap of the synthesized novel analogue was calculated using cyclic voltammetry, UV-Visible spectroscopy and compared with density functional theory (DFT) studies.

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.

Identification of inhibitors against ROS1 targeting NSCLC by In- Silico approach

  • Bavya, Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2022
  • ROS1 (c-ros oncogene) is one of the gene with mutation in NSCLC (non-small cell lung cancer). The increased expression of ROS1 is leading to the increase proliferation of cell, cell migration and survival. Crizotinib and Entrectinib are the drugs that have been approved by FDA against ROS1 protein, but recently patients started to develop resistance against Crizotinib and there is a need of new drug that could act as an effective drug against ROS1 for NSCLC. In this study, we have performed virtual screening, where compounds are taken from Zinc 15 dataset and molecular docking was performed. The top compounds were taken based upon their binding affinity and their interactions with the residues. The compounds stability and chemical reactivity was also studied through Density Functional theory and their properties. Further study of these compounds could reveal the required information of ROS1-inhibitor complex and in the discovery of potent inhibitors.