• Title/Summary/Keyword: Density current

Search Result 5,689, Processing Time 0.031 seconds

Dry Etching Characteristics of GaN using a Magnetized Inductively Coupled $CH_4/H_2/Ar$ Plassma (자화 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성)

  • Kim, Mun-Yeong;Sim, Jong-Gyeong;Tae, Heung-Sik;Lee, Ho-Jun;Lee, Yong-Hyeon;Lee, Jeong-Hui;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.203-209
    • /
    • 2000
  • This paper proposes the improvement of the etch rate of GaN using a magnetized inductively coupled $CH_4/H_2/Ar$plasma. The gradient magnetic field with the axial direction is investigated using Gauss-meter and the ion current density is measured using double Langmuir probe. The applied magnetic field changes the ion current density profile in the radial direction, resulting in producing the higher density in the outer region than in the center. GaN dry etching process is carried out based on the measurements of the ion current density. The each rate of 2000 /min is achieved with $CH_4/H_2/Ar$ chemistries at 800 W input power, 250W rf bias power, 10 mTorr pressure and 100 gauss magnetic field.

  • PDF

Establishment of the Measurement Model about the Adequate Urban Development Density using System Dynamics (시스템다이내믹스를 활용한 도시개발밀도의 적정성 평가 모델 구축 연구)

  • 전유신;문태훈
    • Korean System Dynamics Review
    • /
    • v.4 no.2
    • /
    • pp.71-94
    • /
    • 2003
  • The purpose of this dissertation is to build a development density control model and estimate optimum developmental density level for a sustainable urban growth management. To develop the model, system dynamics modeling approach was used. The model was developed to analyze how urban growth, transition, and decay occur depending on the interaction among population, houses, industry structure, land and urban infrastructure such as road, water supply, and sewage treatment facilities. The model was applied to Anyang city to estimate optimum density level. Extensive computer simulation was conducted to find out the maximum numbers of population, industry structure, houses, and cars that can be adequately sustained with the current Anyang city's infrastructure capacity. The computer simulation result shows that the city is overpopulated by some 90,000 people. It nab analyzed that 20% increase of existing capacity of urban infrastructure is necessary to support current population of Anyang city. To reduce the population to the adequate level whereby the current urban infrastructure can sustain, the current city regulation on floor area ratio needs be strengthened at least 20% to 35%.

  • PDF

Effects of Physical Factors on Computed Tomography Image Quality

  • Jeon, Min-Cheol;Han, Man-Seok;Jang, Jae-Uk;Kim, Dong-Young
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.227-233
    • /
    • 2017
  • The purpose of this study was to evaluate the effects of X-ray photon energy, tissue density, and the kernel essential for image reconstruction on the image quality by measuring HU and noise. Images were obtained by scanning the RMI density phantom within the CT device, and HU and noise were measured as follows: images were obtained by varying the tube voltages, the tube currents and eight different kernels. The greater the voltage-dependent change in the HU value but the noise was decreased. At all densities, changes in the tube current did not exert any significant influence on the HU value, whereas the noise value gradually decreased as the tube current increased. At all densities, changes in the kernel did not exert any significant influence on the HU value. The noise value gradually increased in the lower kernel range, but rapidly increased in the higher kernel range. HU is influenced by voltage and density, and noise is influenced by voltage, current, kernel, and density. This affects contrast resolution and spatial resolution.

A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II) (Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF

Nutrient Variations in the Jindong Bay during Summer by Ecosystem Modeling (해양생태계모델에 의한 하계 진동만의 영양염변동)

  • 김동선;홍철훈
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.164-176
    • /
    • 2003
  • During summer, the DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphate) observed in the Jindong Bay in the southern sea of Korea show much higher values in the inner area of the bay. In general, they have high values in the upper (0-1 m) and lower layers (8 m-bottom), but are relatively lower in the middle layer (1-8 m). These features in their distribution are examined using an ecosystem model with considering the wind, tidal current, horizontal gradient of water density and residual flow. The experiments were focused on how to influence nutrients associated with these conditions. In the experiment with tide-induced residual flow, the values of nutrients appeared lower than the observation, and were well corresponded to it when the effects of wind, tide-induced residual current and horizontal gradient of water density were additionally imposed. A statistical analysis identifies these results. This paper suggests that variation of nutrient in the Jindong Bay during summer should be seriously a(footed wind-driven current by the wind and density-driven current is induced by the horizontal gradient of water density as well as tidal current.

An Electrochemical Evaluation on the Corrosion Resistance of Heavy Anticorrosive Paint (중방식도료의 내식성에 관한 전기화학적 평가)

  • Sung Ho-Jin;Kim Jin-Kyung;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.519-525
    • /
    • 2005
  • An electrochemical evaluation on the corrosion resistance for heavy anticorrosive paint(DFT:25um) was carried out for 5 kinds of heavy anticorrosive paints such as high solid epoxy(HE), solvent free epoxy(SE). tar epoxy(TE), phenol epoxy(PE). and ceramic epoxy(CE). Corrosion current densities obtained by Tafel extrapolation method from anodic and cathodic polarization curves didn't correspond with the values obtained by AC impedance measurement, however, the values of polarization resistance obtained from the cyclic voltammogram showed a good tendency corresponding well with the values of AC impedance measurement. Futhermore there was a good correlation against the corrosion resistance evaluation between passivity current density of the anodic polarization curve and diffusion limiting current density of the cathodic polarization curve. And corrosion resistance increased with corrosion potential shifting to noble direction. From the results discussed above. HE and CE had a relatively good corrosion resistance than other heavy anticorrosive paints.

The Effects of Surface Condition and Flow Rate to the Cathodic Protection Potential and Current on Steel (강의 음극방식에 미치는 표면상태와 유속의 영향)

  • Kyeong-soo, Chung;Seong- Jong, Kim;Myung-Hoon, Lee;Ki-Joon, Kim;Kyung-Man, Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.972-980
    • /
    • 2004
  • Cathodic protection is being widely used to protect steel structures in sea water environment, In order to protect steel structures completely, the flow condition of sea water surrounding with this structures and the surface condition of the structures must be considered for a desirable design of cathodic protection. In this study, the optimum protection potential and current density were investigated in terms of cathodic current density, surface condition and a flow condition of sea water. The optium protection potential of the cleaned specimen was -770 mV(SCE) and below. However in the case of the rusted specimen, its potential was -700 mV(SCE) and below, which was somewhat positive than the cleaned one irrespective of flow condition. The optimum cathodic protection current density for both the cleaned and rusted specimens was 100 mA/$\textrm{m}^2$, however, on the flow condition, 200 mA/$\textrm{m}^2$ to be supplied for cathodic protection of steel structures completely for both cleaned and rusted specimens.

Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission (초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

Role of Magnetic Field Configuration in a Performance of Extended Magnetron Sputtering System with a Cylindrical Cathode

  • Chun, Hui-Gon;Sochugov, Nikolay S.;You, Yong-Zoo;Soloviv, Andrew A.;Zakharov, Alexander N,
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.19-23
    • /
    • 2003
  • Extended unbalanced magnetron sputtering system based on the cylindrical magnetron with a rotating cathode was developed. The unbalanced configuration of magnetic field was realized by means of additional lines of permanent magnets, placed along both sides of a 89 mm outer diameter and 600 mm long cylindrical cathode. The performance of the unbalanced magnetron was assessed in terms of the ion current density and the ion-to-atom ratio incident at the substrate. Furthermore, the paper presents the comparison of the internal plasma parameters, such as the electron temperature, electron density, plasma and floating potentials, measured by a Langmuir probe in various positions from the cathode, for conventional and unbalanced constructions of the cylindrical magnetron. The plasma density and ion current density are about 3-5 times higher than those of conventional one, in the unbalanced magnetron in a 0.24 Pa Ar atmosphere with a DC cathode power of 3 kW.

  • PDF

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF