• Title/Summary/Keyword: Density based Method

Search Result 2,333, Processing Time 0.033 seconds

Hazy Particle Map-based Automated Fog Removal Method with Haziness Degree Evaluator Applied (Haziness Degree Evaluator를 적용한 Hazy Particle Map 기반 자동화 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1266-1272
    • /
    • 2022
  • With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.

Estimation of Wood Oven-Dry Density by Using a Portable Dielectric Moisture Meter (휴대용 유전율식 수분계를 이용한 목재의 전건밀도 추정)

  • Kang, Chun-Won;Lim, Ho-Mook;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.629-639
    • /
    • 2017
  • Tripitaka Koreana in Haein Temple, Hapcheon Province is the most historical and largest heritage in this country, however the species of their blocks have yet been unknown. A nondestructive test method is necessary to investigate their species. The oven-dry density of wood was measured by inversely using the principle of high frequency moisture meter. The oven-dry densities of more than 100 domestic species of specimens estimated by measurement method and high frequency moisture meter were compared and following conclusions were obtained. There was highly close correlation between the oven-dry density estimated by measurement method and the oven-dry density estimated by high frequency moisture meter. The densities of Tripitaka Koreana that was a global cultural heritage could be correctly estimated by using high frequency moisture meter and the equilibrium moisture content under which Tripitaka Koreana equilibrated, thus, it was expected to provide the key to species identification.

Flow-density Relations Satisfying Stationary Conditions using Statistical Analysis (통계적 분석에 의한 정상상태조건을 만족하는 교통량-밀도 관계 도출)

  • Kim, Yeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.135-142
    • /
    • 2006
  • The flow-density relations represent equilibrium relations between flow and density in the stationary state. Using individual vehicle data this paper proposed a method to 131ter traffic data in the stationary state and showed flow-density relations produced by the traffic data in the stationary state. The Proposed method is based on the idea that free flow and congested flow show totally different traffic behaviors and time series of the traffic data observed at detection stations. The traffic data collected from the stationary state in the free flow using this filtering method consist in the left branch of the flow-density relation and the traffic data collected from the stationary state in the congested flow consist in the right branch of the flow-density relation. The traffic data in the stationary state skew reproducible flow-density relation in the almost whole range of the traffic flow.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

A novel reliability analysis method based on Gaussian process classification for structures with discontinuous response

  • Zhang, Yibo;Sun, Zhili;Yan, Yutao;Yu, Zhenliang;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.771-784
    • /
    • 2020
  • Reliability analysis techniques combining with various surrogate models have attracted increasing attention because of their accuracy and great efficiency. However, they primarily focus on the structures with continuous response, while very rare researches on the reliability analysis for structures with discontinuous response are carried out. Furthermore, existing adaptive reliability analysis methods based on importance sampling (IS) still have some intractable defects when dealing with small failure probability, and there is no related research on reliability analysis for structures involving discontinuous response and small failure probability. Therefore, this paper proposes a novel reliability analysis method called AGPC-IS for such structures, which combines adaptive Gaussian process classification (GPC) and adaptive-kernel-density-estimation-based IS. In AGPC-IS, an efficient adaptive strategy for design of experiments (DoE), taking into consideration the classification uncertainty, the sampling uniformity and the regional classification accuracy improvement, is developed with the purpose of improving the accuracy of Gaussian process classifier. The adaptive kernel density estimation is introduced for constructing the quasi-optimal density function of IS. In addition, a novel and more precise stopping criterion is also developed from the perspective of the stability of failure probability estimation. The efficiency, superiority and practicability of AGPC-IS are verified by three examples.

Mapping the Spatial Distribution of Drainage Density Based on GIS (GIS 기반 유역 배수 밀도의 공간분포도 작성)

  • Kim, Joo-Cheol;Lee, Sang-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Drainage density, defined as the degree to which a landscape is dissected by streams, is a fundamental property of natural terrain that reflect the comprehensive morphologic response of watershed. In this study the spatial variability of drainage density is analyzed by statistical approach to it and its plotting method is proposed. Overland flow length is confirmed to be a highly variable spatial factor from the result of statistical analysis. Distribution map of drainage density based on spatial autocorrelation length in this study would be a superior tool to the classical definition of drainage density.

Naive Bayes Approach in Kernel Density Estimation (커널 밀도 측정에서의 나이브 베이스 접근 방법)

  • Xiang, Zhongliang;Yu, Xiangru;Al-Absi, Ahmed Abdulhakim;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.76-78
    • /
    • 2014
  • Naive Bayes (NB, for shortly) learning is more popular, faster and effective supervised learning method to handle the labeled datasets especially in which have some noises, NB learning also has well performance. However, the conditional independent assumption of NB learning imposes some restriction on the property of handling data of real world. Some researchers proposed lots of methods to relax NB assumption, those methods also include attribute weighting, kernel density estimating. In this paper, we propose a novel approach called NB Based on Attribute Weighting in Kernel Density Estimation (NBAWKDE) to improve the NB learning classification ability via combining kernel density estimation and attribute weighting.

  • PDF

Design of Quasi-Cyclic Low-Density Parity Check Codes with Large Girth

  • Jing, Long-Jiang;Lin, Jing-Li;Zhu, Wei-Le
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.381-389
    • /
    • 2007
  • In this paper we propose a graph-theoretic method based on linear congruence for constructing low-density parity check (LDPC) codes. In this method, we design a connection graph with three kinds of special paths to ensure that the Tanner graph of the parity check matrix mapped from the connection graph is without short cycles. The new construction method results in a class of (3, ${\rho}$)-regular quasi-cyclic LDPC codes with a girth of 12. Based on the structure of the parity check matrix, the lower bound on the minimum distance of the codes is found. The simulation studies of several proposed LDPC codes demonstrate powerful bit-error-rate performance with iterative decoding in additive white Gaussian noise channels.

  • PDF

A Density-based Clustering Method

  • Ahn, Sung Mahn;Baik, Sung Wook
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.715-723
    • /
    • 2002
  • This paper is to show a clustering application of a density estimation method that utilizes the Gaussian mixture model. We define "closeness measure" as a clustering criterion to see how close given two Gaussian components are. Closeness measure is defined as the ratio of log likelihood between two Gaussian components. According to simulations using artificial data, the clustering algorithm turned out to be very powerful in that it can correctly determine clusters in complex situations, and very flexible in that it can produce different sizes of clusters based on different threshold valuesold values

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF