• Title/Summary/Keyword: Density anomaly

Search Result 80, Processing Time 0.022 seconds

Detection algorithm of ionospheric delay anomaly based on multi-reference stations for ionospheric scintillation

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun;Shin, Mi-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.701-706
    • /
    • 2011
  • Radio waves including GPS signals, various TV communications, and radio broadcasting can be disturbed by a strong solar storm, which may occur due to solar flares and produce an ionospheric delay anomaly in the ionosphere according to the change of total electron content. Electron density irregularities can cause deep signal fading, frequently known as ionospheric scintillation, which can result in the positioning error using GPS signal. This paper proposes a detection algorithm for the ionosphere delay anomaly during a solar storm by using multi-reference stations. Different TEC grid which has irregular electron density was applied above one reference station. Then the ionospheric delay in zenith direction applied different TEC will show comparatively large ionospheric zenith delay due to the electron irregularity. The ionospheric slant delay applied an elevation angle at reference station was analyzed to detect the ionospheric delay anomaly that can result in positioning error. A simulation test was implemented and a proposed detection algorithm using data logged by four reference stations was applied to detect the ionospheric delay anomaly compared to a criterion.

Detecting Anomalous Trajectories of Workers using Density Method

  • Lan, Doi Thi;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.109-118
    • /
    • 2022
  • Workers' anomalous trajectories allow us to detect emergency situations in the workplace, such as accidents of workers, security threats, and fire. In this work, we develop a scheme to detect abnormal trajectories of workers using the edit distance on real sequence (EDR) and density method. Our anomaly detection scheme consists of two phases: offline phase and online phase. In the offline phase, we design a method to determine the algorithm parameters: distance threshold and density threshold using accumulated trajectories. In the online phase, an input trajectory is detected as normal or abnormal. To achieve this objective, neighbor density of the input trajectory is calculated using the distance threshold. Then, the input trajectory is marked as an anomaly if its density is less than the density threshold. We also evaluate performance of the proposed scheme based on the MIT Badge dataset in this work. The experimental results show that over 80 % of anomalous trajectories are detected with a precision of about 70 %, and F1-score achieves 74.68 %.

Seasonal Variations and Characteristics of the Stratification Depth and Strength in the Seas Near the Korea Peninsular using the Relative Potential Energy Anomaly (한반도 근해의 상대적 위치에너지 편차 변화를 이용한 성층화의 특성과 계절별 변화에 대한 연구)

  • Cho, Chang-Bong;Kim, Young-Gyu;Chang, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • In this paper, we have proposed a method for quantization of the stratification strength in the sea water and analysing the distributions of the maximum stratification depths calculated by the method at the seas near the Korean peninsular. For calculating the stratification strength, modified and applied the potential energy anomaly formular which was suggested by Simpson in 1977. The data had been collected by NFRDI from 1971 to 2008 were used to determine the maximum vertical density gradient depth and the relative potential energy anomaly at that depth. In the East Sea, the stratification depth has become deepened about 20m in February and April since 1971. In Yellow-South Sea, the maximum density gradient depth has been deepened about 10m only in December during the same period and the difference of the stratification depth between summer and winter has been enlarged. These trends of variation of stratification strength and depth near the Korean peninsular should be investigated more carefully and continuously. And the results of these studies could be adopted for the more efficient operation of underwater weapon and detection systems.

Studies on the Geological Environment of the Nanjido Waste Disposal Site: Gravity and Magnetic Investigations (난지도 매립지 및 그 주변의 지질환경 연구: 중력 및 자력탐사)

  • Kwon, Byung-Doo;Kim, Cha-Seop;Chung, Ho-Joon;Oh, Seok-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.469-480
    • /
    • 1995
  • Gravity and magnetic surveys were carried out to investigate the three-dimensional configuration and characteristics of the landfills at Nanjido waste disposal site. For terrain correction and three-dimensional density inversion of gravity data an algorithm, which calculates the gravity effect of a three-dimensional body by using the solid angle method, is developed. This algorithm has been proved to give more accurate terrain correction values for the small survey area having varied topography like Nanjido site as compared with widely used methods such as Hammer's method and multiquadric equation method. Density inversion of gravity anomaly data gives very useful information about the lateral and vertical variation of the landfills, which can be used to discriminate the kinds of wastes. The average density of filled materials appears to be $1.7\;g/cm^3$ which is much higher than the value $(0.8\;g/cm^3)$ estimated by Seoul City. The lateral variation of density shows high correlation with the pattern of ongoing depression of the landfills. The northern region of the landfill no. 1, which shows low density and high depression, is closely associated with the industrial waste and sludge filled area. The magnetic anomaly data provide information about relative concentration of magnetic materials, which is also very useful to investigate characteristics of the fills. Several high positive anomaly regions on the reduced-to-pole magnetic anomaly map are appeared to be associated with the industrial waste fills, but certain industrial waste fills show low negative anomalies. This kind of magnetic information can be used in selecting drilling locations over landfills away from buried metal products during the stabilization process.

  • PDF

Tropospheric Anomaly Detection in Multi-reference Stations Environment during Localized Atmosphere Conditions-(1) : Basic Concept of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.265-270
    • /
    • 2016
  • Extreme tropospheric anomalies such as typhoons or regional torrential rain can degrade positioning accuracy of the GPS signal. It becomes one of the main error terms affecting high-precision positioning solutions in network RTK. This paper proposed a detection algorithm to be used during atmospheric anomalies in order to detect the tropospheric irregularities that can degrade the quality of correction data due to network errors caused by inhomogeneous atmospheric conditions between multi-reference stations. It uses an atmospheric grid that consists of four meteorological stations and estimates the troposphere zenith total delay difference at a low performance point in an atmospheric grid. AWS (automatic weather station) meteorological data can be applied to the proposed tropospheric anomaly detection algorithm when there are different atmospheric conditions between the stations. The concept of probability density distribution of the delta troposphere slant delay was proposed for the threshold determination.

Gravity and Magnetic Surverys for Volcanic Rocks in Yeoncheon Area, kyonggi-do (경기도 인천지역 분포하는 화산암류에 대한 중력 및 자력 탐사 연구)

  • 박혁진
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.645-651
    • /
    • 1999
  • The gravity and magnetic measurements have been obtained from 34 stations with 50m intervals along the survey line positioned between Jangtanri and sindapri for studying subsurface geology and structures of the volcanic rocks in Yeoncheon area. The Bouguer gravity and magnetic anomaly values were evaluated from the reduction of the field observation, and then interpreted by Nettleton's method and maximum-pepth rules, are approximately 160m based on magnetic data and 135m based on gravity data. High Bouguer gravity anomaly zone between 0m in Jangtanri and 900m along the survery line, is caused by thick and high density, older dasalt which is positioned beneath jijangbong tuff breccia, and this result corresponds to the interpretation result based on magnetic anomly. Lower gravity and magnetic anomaly zones ariund 900m are caused by between 1300m and 1550m are caused by high density of Quarternary basalt exposed in the surface, and lower gravity and magnetic anomalies at 200m and 1250m are caused by faults.

  • PDF

3D Density Modelling of the Yellow Sea Sedimentary Basin

  • Choi, Sungchan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.283-291
    • /
    • 2004
  • To find out the locus of the Quinling-Dabie-Sulu continental collision’s boundary and to estimate underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, KIGAM in a period between 2000 and 2002. The measured gravity anomaly in the investigations area is mainly responsed by depth and density differences between the sedimentary basin and the basement. The high density model-bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula, which might be emplaced along the continental collision’s boundary. The total volume of the very low density model-bodies might be expected at about 20,000 km3 in the model area.

  • PDF

The First Measurement of Seasonal Trends in the Equatorial Ionospheric Anomaly Trough at the CHUK GNSS Site During the Solar Maximum in 2014

  • Chung, Jong-Kyun;Yoo, Sung-Moon;Lee, Wookyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • The equatorial region of the Earth's ionosphere exhibits large temporal variations in electron density that have significant implications on satellite signal transmissions. In this paper, the first observation results of the variations in the trough of the equatorial ionospheric anomaly at the permanent Global Navigation Satellite System (GNSS) site in Chuuk (Geographic: $7.5^{\circ}N$, $151.9^{\circ}E$; Geomagnetic: $0.4^{\circ}N$) are presented. It was found that the daytime Global Positioning System (GPS) total electron content (TEC) values vary according to the 27 day period of solar rotation, and that these trends show sharp contrast with those of summer. The amplitudes of the semi-annual anomaly were 12.4 TECU (33 %) on $19^{th}$ of March and 8.8 TECU (23 %) on $25^{th}$ of October respectively, with a yearly averaged value of 38.0 TECU. The equinoctial asymmetry at the March equinox was higher than that at the October equinox rather than the November equinox. Daily mean TEC values were higher in December than in June, which could be interpreted as annual or winter anomalies. The nighttime GPS TEC enhancements during 20:00-24:00 LT also exhibited the semi-annual variation. The pre-midnight TEC enhancement could be explained with the slow loss process of electron density that is largely produced during the daytime of equinox. However, the significant peaks around 22:00-23:00 LT at the spring equinox require other mechanisms other than the slow loss process of the electron density.

Geomagnetic Anomalies by Underground Fracture Zones and Vacant Spaces (파쇄대와 지하의 빈 공간에 의한 지자기이상)

  • Lee, Moon-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.2
    • /
    • pp.52-60
    • /
    • 2010
  • The changes of magnetic flux density distribution and the degree of magnetic anomaly on the ground surface by underground fracture zones and empty spaces had been investigated through the variations of the measuring heights. The magnetic flux density distributions were monitored for the ground surfaces of fracture zones, empty spaces and tunnels by fluxgate-type magnetometer. The fracture zones showed the magnetic anomaly with (+) and (-) peak-pairs in the magnetic flux distribution measured at 0.15 m height from the ground surface, and this anomaly disappeared at the height of 1.15 m. The underground empty spaces and tunnels showed the decrease of magnetic flux densities, where the degree of this density decrease diminished with the increase of the underground depth. And, the existence and size of underground empty spaces, such as tunnels and sink holes, could be monitored by the phenomena of this decreasing flux density.

Regional-residual Separation of Microgravity Data (고정밀 중력탐사 자료의 광역-나머지 이상 분리)

  • Rim, Hyoungrea;Park, Gyesoon;Kim, Chang-Ryol
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • In this paper, we propose a method to apply the polynomial fitting for regional-residual separation of microgravity data based on the characteristics of gravity anomaly without a prior information. Since the microgravity survey is usually carried out in small regions, it is common to approximate regional anomaly by the first-order polynomial plane. However, if the regional anomaly patterns are difficult to be approximated to a first-order plane, the complete gravity anomaly is divided into small zones enough to approximate first-order plane by means of Parasnis density estimation method. The regional-residual separation is then applied on the splitted zones individually. When the gravity anomalies can be splitted spatially, we showed that the residual anomalies can be more effectively extracted based on the regional geological structures by regional anomaly separation from each of the divided regions, rather than applying the entire data set at one time.